login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A027081
a(n) = Sum_{k=0..2n-3} T(n,k) * T(n,k+3), with T given by A027052.
2
8, 56, 438, 3574, 29738, 249200, 2094902, 17648718, 148968822, 1259807224, 10674450652, 90618393250, 770728674864, 6567151658496, 56054864624310, 479267092351534, 4104271159315190, 35200977081482376, 302343415930398696, 2600408469332918538, 22394817457275426524
OFFSET
3,1
LINKS
MAPLE
T:= proc(n, k) option remember;
if k<0 or k>2*n then 0
elif k=0 or k=2 or k=2*n then 1
elif k=1 then 0
else add(T(n-1, k-j), j=1..3)
fi
end:
seq( add(T(n, k)*T(n, k+3), k=0..2*n-3), n=3..30); # G. C. Greubel, Nov 07 2019
MATHEMATICA
T[n_, k_]:= T[n, k]= If[k<0 || k>2*n, 0, If[k==0 || k==2 || k==2*n, 1, If[k==1, 0, Sum[T[n-1, k-j], {j, 3}]]]]; Table[Sum[T[n, k]*T[n, k+3], {k, 0, 2*n-3}], {n, 3, 30}] (* G. C. Greubel, Nov 07 2019 *)
PROG
(Sage)
@CachedFunction
def T(n, k):
if (k<0 or k>2*n): return 0
elif (k==0 or k==2 or k==2*n): return 1
elif (k==1): return 0
else: return sum(T(n-1, k-j) for j in (1..3))
[sum(T(n, k)*T(n, k+3) for k in (0..2*n-3)) for n in (3..30)] # G. C. Greubel, Nov 07 2019
CROSSREFS
Sequence in context: A323699 A323700 A182430 * A093134 A001398 A251250
KEYWORD
nonn
EXTENSIONS
More terms from Sean A. Irvine, Oct 22 2019
STATUS
approved