The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A247287 Number of weak peaks in all Motzkin paths of length n. A weak peak of a Motzkin path is a vertex on the top of a hump. A hump is an upstep followed by 0 or more flatsteps followed by a downstep. For example, the Motzkin path u*duu*h*h*dd, where u=(1,1), h=(1,0), d(1,-1), has 4 weak peaks (shown by the stars). 2
 0, 0, 1, 4, 13, 38, 108, 304, 857, 2426, 6902, 19728, 56622, 163092, 471205, 1365008, 3963321, 11530786, 33607190, 98105616, 286795300, 839470664, 2460038427, 7216652488, 21190820678, 62279238828, 183185851903, 539220930004, 1588341106957, 4681678922366 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) = Sum(k*A247286(n,k), 0<=k<=n). LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA G.f.: (1-z-sqrt(1-2*z-3*z^2))/(2*(1-z)^2*sqrt(1-2*z-3*z^2)). a(n) ~ 3^(n+3/2) / (8*sqrt(Pi*n)). - Vaclav Kotesovec, Sep 16 2014 EXAMPLE a(3)=4 because the Motzkin paths hhh, hu*d, u*dh, and u*h*d have 0, 1, 1, and 2 weak peaks (shown by the stars). MAPLE g := ((1-z-sqrt(1-2*z-3*z^2))*(1/2))/((1-z)^2*sqrt(1-2*z-3*z^2)): gser := series(g, z = 0, 34): seq(coeff(gser, z, n), n = 0 .. 32); PROG (PARI) z='z+O('z^66); concat([0, 0], Vec((1-z-sqrt(1-2*z-3*z^2))/(2*(1-z)^2*sqrt(1-2*z-3*z^2)))) \\ Joerg Arndt, Sep 14 2014 CROSSREFS Cf. A001006, A247286. Sequence in context: A094706 A325927 A056014 * A159036 A058693 A027076 Adjacent sequences:  A247284 A247285 A247286 * A247288 A247289 A247290 KEYWORD nonn AUTHOR Emeric Deutsch, Sep 14 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 17 01:53 EDT 2021. Contains 347478 sequences. (Running on oeis4.)