OFFSET
0,6
COMMENTS
A weak peak of a Motzkin path is a vertex on the top of a hump. A hump is an upstep followed by 0 or more flatsteps followed by a downstep. For example, the Motzkin path u*duu*h*h*dd, where u=(1,1), h=(1,0), d(1,-1), has 4 weak peaks (shown by the stars).
Row n (n>=1) contains n entries.
Sum of entries in row n is the Motzkin number A001006(n).
Sum(k*T(n,k), 0<=k<=n) = A247287(n).
LINKS
Alois P. Heinz, Rows n = 0..141, flattened
FORMULA
The g.f. G(t,z) satisfies G = 1 + z*G + z^2*(G - 1/(1-z) + t/(1-t*z))*G.
EXAMPLE
Row 3 is 1,2,1 because the Motzkin paths hhh, hu*d, u*dh, and u*h*d have 0, 1, 1, and 2 weak peaks (shown by the stars).
Triangle starts:
1;
1;
1,1;
1,2,1;
1,4,3,1;
1,8,7,4,1;
MAPLE
eq := G = 1+z*G+z^2*(G-1/(1-z)+t/(1-t*z))*G: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 14 do P[n] := sort(expand(coeff(Gser, z, n))) end do: 1; for n to 14 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(x, y, t, c) option remember; `if`(y<0 or y>x, 0,
`if`(x=0, 1, expand(b(x-1, y-1, false, 0)*z^c+b(x-1, y, t,
`if`(t, c+1, 0))+ b(x-1, y+1, true, 1))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0, false, 0)):
seq(T(n), n=0..14); # Alois P. Heinz, Sep 14 2014
MATHEMATICA
b[x_, y_, t_, c_] := b[x, y, t, c] = If[y<0 || y>x, 0, If[x == 0, 1, Expand[b[x-1, y-1, False, 0]*z^c + b[x-1, y, t, If[t, c+1, 0]] + b[x-1, y+1, True, 1]]]]; T[n_] := Function[{p}, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, False, 0]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, May 27 2015, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 14 2014
STATUS
approved