The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099239 Square array read by antidiagonals associated with sections of 1/(1-x-x^k). 5
 1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 21, 13, 5, 1, 1, 32, 55, 41, 19, 6, 1, 1, 64, 144, 129, 69, 26, 7, 1, 1, 128, 377, 406, 250, 106, 34, 8, 1, 1, 256, 987, 1278, 907, 431, 153, 43, 9, 1, 1, 512, 2584, 4023, 3292, 1757, 686, 211, 53, 10, 1, 1, 1024, 6765, 12664, 11949, 7168, 3088, 1030, 281, 64, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS Rows include A099242, A099253. Columns include A034856. Main diagonal is A099240. Sums of antidiagonals are A099241. LINKS G. C. Greubel, Antidiagonal rows n = 0..50, flattened FORMULA T(n, k) = Sum_{j=0..n} binomial(k*n -(k-1)*(j-1), j), n, k>=0. (square array) T(n, k) = Sum_{j=0..n} binomial(k + (n-1)*(j+1), n*(j+1) -1), n>0. (square array) T(n, k) = Sum_{j=0..n-k} binomial(k*(n-k) - (k-1)*(j-1), j). (number triangle) Rows of the square array are generated by 1/((1-x)^k-x). Rows satisfy a(n) = a(n-1) - Sum_{k=1..n} (-1)^(k^binomial(n, k)) * a(n-k). EXAMPLE Rows begin   1, 1,  1,   1,   1, ...                               A000012;   1, 2,  4,   8,  16, ...      1-section of 1/(1-x-x)   A000079;   1, 3,  8,  21,  55, ....     bisection of 1/(1-x-x^2) A001906;   1, 4, 13,  41, 129, ...     trisection of 1/(1-x-x^3) A052529; (essentially)   1, 5, 19,  69, 250, ...  quadrisection of 1/(1-x-x^4) A055991;   1, 6, 26, 106, 431, ...  quintisection of 1/(1-x-x^5) A079675; (essentially) MATHEMATICA T[n_, k_]:= Sum[Binomial[k*(n-k) - (k-1)*(j-1), j], {j, 0, n-k}]; Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 09 2021 *) PROG (Sage) def A099239(n, k): return sum( binomial(k*(n-k) -(k-1)*(j-1), j) for j in (0..n-k) ) flatten([[A099239(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021 (Magma) A099239:= func< n, k | (&+[Binomial(k*(n-k) -(k-1)*(j-1), j): j in [0..n-k]]) >; [A099239(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021 CROSSREFS Cf. A034856, A099240, A099241, A099242, A099253. Cf. A000079, A001906, A052529, A055991, A079675. Sequence in context: A247286 A055587 A137743 * A167630 A322264 A009998 Adjacent sequences:  A099236 A099237 A099238 * A099240 A099241 A099242 KEYWORD easy,nonn,tabl AUTHOR Paul Barry, Oct 08 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 25 03:53 EDT 2021. Contains 346283 sequences. (Running on oeis4.)