login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A099239 Square array read by antidiagonals associated with sections of 1/(1-x-x^k). 5
1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 8, 8, 4, 1, 1, 16, 21, 13, 5, 1, 1, 32, 55, 41, 19, 6, 1, 1, 64, 144, 129, 69, 26, 7, 1, 1, 128, 377, 406, 250, 106, 34, 8, 1, 1, 256, 987, 1278, 907, 431, 153, 43, 9, 1, 1, 512, 2584, 4023, 3292, 1757, 686, 211, 53, 10, 1, 1, 1024, 6765, 12664, 11949, 7168, 3088, 1030, 281, 64, 11, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Rows include A099242, A099253. Columns include A034856. Main diagonal is A099240. Sums of antidiagonals are A099241.

LINKS

G. C. Greubel, Antidiagonal rows n = 0..50, flattened

FORMULA

T(n, k) = Sum_{j=0..n} binomial(k*n -(k-1)*(j-1), j), n, k>=0. (square array)

T(n, k) = Sum_{j=0..n} binomial(k + (n-1)*(j+1), n*(j+1) -1), n>0. (square array)

T(n, k) = Sum_{j=0..n-k} binomial(k*(n-k) - (k-1)*(j-1), j). (number triangle)

Rows of the square array are generated by 1/((1-x)^k-x).

Rows satisfy a(n) = a(n-1) - Sum_{k=1..n} (-1)^(k^binomial(n, k)) * a(n-k).

EXAMPLE

Rows begin

  1, 1,  1,   1,   1, ...                               A000012;

  1, 2,  4,   8,  16, ...      1-section of 1/(1-x-x)   A000079;

  1, 3,  8,  21,  55, ....     bisection of 1/(1-x-x^2) A001906;

  1, 4, 13,  41, 129, ...     trisection of 1/(1-x-x^3) A052529; (essentially)

  1, 5, 19,  69, 250, ...  quadrisection of 1/(1-x-x^4) A055991;

  1, 6, 26, 106, 431, ...  quintisection of 1/(1-x-x^5) A079675; (essentially)

MATHEMATICA

T[n_, k_]:= Sum[Binomial[k*(n-k) - (k-1)*(j-1), j], {j, 0, n-k}];

Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Mar 09 2021 *)

PROG

(Sage)

def A099239(n, k): return sum( binomial(k*(n-k) -(k-1)*(j-1), j) for j in (0..n-k) )

flatten([[A099239(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Mar 09 2021

(Magma)

A099239:= func< n, k | (&+[Binomial(k*(n-k) -(k-1)*(j-1), j): j in [0..n-k]]) >;

[A099239(n, k): k in [0..n], n in [0..12]]; // G. C. Greubel, Mar 09 2021

CROSSREFS

Cf. A034856, A099240, A099241, A099242, A099253.

Cf. A000079, A001906, A052529, A055991, A079675.

Sequence in context: A247286 A055587 A137743 * A167630 A322264 A009998

Adjacent sequences:  A099236 A099237 A099238 * A099240 A099241 A099242

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Oct 08 2004

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 25 03:53 EDT 2021. Contains 346283 sequences. (Running on oeis4.)