The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A099253 (7*n+6)-th terms of expansion of 1/(1-x-x^7). 2
 1, 8, 43, 211, 1030, 5055, 24851, 122166, 600470, 2951330, 14505951, 71297834, 350434385, 1722411860, 8465785506, 41609980404, 204516223418, 1005212819668, 4940697593195, 24283905085013, 119357243593561, 586649945651116 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 LINKS G. C. Greubel, Table of n, a(n) for n = 0..500 D. Birmajer, J. B. Gil, and M. D. Weiner, n the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3 , example 16. Index entries for linear recurrences with constant coefficients, signature (8,-21,35,-35,21,-7,1). FORMULA G.f.: 1/((1-x)^7 - x); Equals A099239(n, 7). a(n) = 8*a(n-1) -21*a(n-2) +35*a(n-3) -35*a(n-4) +21*a(n-5) -7*a(n-6) +a(n-7). a(n) = Sum_{k=0..n} binomial(7*n - 6*(k-1), k). a(n) = Sum_{k=0..n} binomial(n + 6*(k+1), k + 6*(k+1)). a(n) = Sum_{k=0..n} binomial(n + 6*(k+1), n-k). MATHEMATICA Table[Sum[Binomial[7*n-6*(j-1), j], {j, 0, n}], {n, 0, 30}] (* G. C. Greubel, Mar 09 2021 *) PROG (Sage) [sum(binomial(7*n-6*j+6, j) for j in (0..n)) for n in (0..30)] # G. C. Greubel, Mar 09 2021 (Magma) [(&+[Binomial(7*n-6*j+6, j): j in [0..n]]): n in [0..30]]; // G. C. Greubel, Mar 09 2021 CROSSREFS Cf. A099239. Sequence in context: A171479 A227209 A282523 * A239033 A034361 A117617 Adjacent sequences:  A099250 A099251 A099252 * A099254 A099255 A099256 KEYWORD easy,nonn AUTHOR Paul Barry, Oct 08 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 22:15 EDT 2021. Contains 343992 sequences. (Running on oeis4.)