The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A227209 Expansion of 1/((1-x)^2*(1-2x)*(1-4x)). 0
 1, 8, 43, 198, 849, 3516, 14311, 57746, 231997, 930024, 3724179, 14904894, 59635945, 238576532, 954371647, 3817617642, 15270732693, 61083455040, 244334868715, 977341571990, 3909370482241, 15637490317548 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS This sequence was chosen to illustrate a method of solution. In general, for the expansion of 1/((1-t)^2)*(1-s)(1-r)) with  r>s>t  we have the formula: a(n) = ( K*r^(n+3) + L*s^(n+3) + M*t^(n+3) + N*t^(n+3) )/D  where  K,L,M,N,D, have the following values: K = (s-t)^2; L = -(r-t)^2; M = (r-s)*(r+s-2*t); N = (r-t)*(s-t)*(r-s)*(n+3); D = (r-s)*(r-t)^2*(s-t)^2. Directly using formula we get a(n) = ( 4^(n+3) - 9*2^(n+3) + 8 + 6*(n+3) )/18.  After transformation we obtain previous formula. LINKS FORMULA a(n) = ( 4^(n+3) - 9*2^(n+3) + 6*n + 26 )/18. MATHEMATICA nn = 25; CoefficientList[Series[1/((1 - x)^2*(1 - 2 x)*(1 - 4 x)), {x, 0, nn}], x] (* T. D. Noe, Sep 19 2013 *) CROSSREFS Cf. A229026. Sequence in context: A094865 A122880 A171479 * A282523 A099253 A239033 Adjacent sequences:  A227206 A227207 A227208 * A227210 A227211 A227212 KEYWORD nonn,easy AUTHOR Yahia Kahloune, Sep 19 2013 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 06:58 EDT 2021. Contains 345098 sequences. (Running on oeis4.)