login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A099252
Bisection of A005043.
3
0, 1, 6, 36, 232, 1585, 11298, 83097, 625992, 4805595, 37458330, 295673994, 2358641376, 18985057351, 154000562758, 1257643249140, 10331450919456, 85317692667643, 707854577312178, 5897493615536452, 49320944483427000, 413887836110423787, 3484084625456932134, 29412628894558563849
OFFSET
0,3
REFERENCES
G. F. Smith, On isotropic tensors and rotation tensors of dimension m and order n, Tensor (N.S.), Vol. 19 (1968), 79-88 (MR0224008).
LINKS
D. L. Andrews, Letter to N. J. A. Sloane, Apr 10 1978.
FORMULA
Recurrence: (n+1)*(2*n+1)*a(n) = n*(26*n-7)*a(n-1) - 3*(26*n^2 - 61*n + 39)*a(n-2) + 27*(n-2)*(2*n-3)*a(n-3). - Vaclav Kotesovec, Oct 17 2012
a(n) ~ 3^(2*n+5/2)/(16*sqrt(2*Pi)*n^(3/2)). - Vaclav Kotesovec, Oct 17 2012
a(n) = -hypergeom([-2*n - 1, 1/2], [2], 4). - Peter Luschny, Jul 26 2020
MAPLE
G := (1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x)): Gser := series(G, x=0, 60):
seq(coeff(Gser, x^(2*n-1)), n=1..25); # Emeric Deutsch
a := n -> -hypergeom([-2*n-1, 1/2], [2], 4):
seq(simplify(a(n)), n=0..23); # Peter Luschny, Jul 26 2020
MATHEMATICA
Take[CoefficientList[Series[(1+x-Sqrt[1-2*x-3*x^2])/(2*x*(1+x)), {x, 0, 60}], x], {2, -1, 2}] (* Vaclav Kotesovec, Oct 17 2012 *)
PROG
(PARI) x='x+O('x^66); v=Vec((1+x-sqrt(1-2*x-3*x^2))/(2*x*(1+x))); vector(#v\2, n, v[2*n]) \\ Joerg Arndt, May 12 2013
(Sage)
def A():
a, b, c, d, n = 0, 1, 1, -1, 1
yield 0
while True:
n += 1
a, b = b, (3*(n-1)*n*a+(2*n-1)*n*b)//((n+1)*(n-1))
c, d = d, (3*(n-1)*c-(2*n-1)*d)//n
if n%2: yield -(d + b)*(1-(-1)^n)//2
A099252 = A()
print([next(A099252) for _ in range(24)]) # Peter Luschny, May 16 2016
CROSSREFS
Sequence in context: A344269 A144819 A284647 * A057395 A259819 A213282
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Nov 16 2004
EXTENSIONS
More terms from Emeric Deutsch, Nov 18 2004
STATUS
approved