login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A247288
Triangle read by rows: T(n,k) is the number of peakless Motzkin paths of length n having k weak peaks.
2
1, 1, 1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 4, 2, 1, 1, 0, 8, 4, 3, 1, 1, 0, 16, 8, 7, 4, 1, 1, 0, 32, 16, 17, 10, 5, 1, 1, 0, 64, 32, 41, 26, 14, 6, 1, 1, 0, 128, 64, 98, 66, 39, 19, 7, 1, 1, 0, 256, 128, 232, 164, 107, 56, 25, 8, 1, 1, 0, 512, 256, 544, 400, 286, 164, 78, 32, 9, 1
OFFSET
0,10
COMMENTS
A weak peak of a Motzkin path is a vertex on the top of a hump.
A hump is an upstep followed by 0 or more flatsteps followed by a downstep. For example, the peakless Motzkin path uhu*h*ddu*h*h*d where u=(1,1), h=(1,0), d(1,-1), has 5 weak peaks (shown by the stars).
Row n (n>=1) contains n entries.
Sum of entries in row n is the RNA secondary structure number A004148(n).
Sum(k*T(n,k), 0<=k<=n) = A247289(n).
LINKS
FORMULA
The g.f. G(t,z) satisfies G = 1 + z*G + z^2*(G - 1 - z/(1-z) + t^2*z/(1-t*z))*G.
EXAMPLE
Row 4 is 1,0,2,1 because the peakless Motzkin paths hhhh, u*h*dhh, hu*h*dh, and u*h*h*d have 0, 2, 2, and 3 weak peaks (shown by the stars).
Triangle starts:
1;
1;
1,0;
1,0,1;
1,0,2,1;
1,0,4,2,1;
1,0,8,4,3,1;
MAPLE
eq := G = 1+z*G+z^2*(G-1-z/(1-z)+t^2*z/(1-t*z))*G: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 16)): for n from 0 to 14 do P[n] := sort(expand(coeff(Gser, z, n))) end do: 1; for n to 14 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form
CROSSREFS
Sequence in context: A371740 A326757 A147787 * A135221 A318686 A214546
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Sep 14 2014
STATUS
approved