login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371740
Triangle read by rows: g.f. (1 - t)^(-x) * (1 + t)^(2-x).
1
1, 2, 1, 1, 0, 4, 0, 3, 1, 0, 6, 6, 0, 5, 6, 1, 0, 16, 24, 8, 0, 14, 23, 10, 1, 0, 60, 110, 60, 10, 0, 54, 105, 65, 15, 1, 0, 288, 600, 420, 120, 12, 0, 264, 574, 435, 145, 21, 1, 0, 1680, 3836, 3150, 1190, 210, 14, 0, 1560, 3682, 3199, 1330, 280, 28, 1, 0, 11520, 28224, 25984, 11760, 2800, 336, 16
OFFSET
0,2
FORMULA
G.f.: (1 - t)^(-x)*(1 + t)^(2-x) = Sum_{n >= 0} R(n, x)*t^n/floor((n+1)/2)! = 1 + 2*t/1! + (1 + x)*t^2/1! + 4*x*t^3/2! + x*(3 + x)*t^4/2! + 6*x*(1 + x)*t^5/3! + x*(1 + x)*(5 + x)*t^6/3! + 8*x*(1 + x)*(2 + x)*t^7/3! + x*(1 + x)*(2 + x)*(7 + x)*t^8/4! + 10*x*(1 + x)*(2 + x)*(3 + x)*t^9/5! + ....
Row polynomials: R(2*n, x) = (2*n - 1 + x) * Product_{i = 0..n-2} (x + i) for n >= 1.
R(2*n+1, x) = (2*n + 2) * Product_{i = 0..n-1} (x + i) for n >= 0.
T(2*n, k) = |Stirling1(n, k)| + n*|Stirling1(n-1, k)| = A132393(n, k) + n* A132393(n-1, k);
T(2*n+1, k) = (2*n + 2)*|Stirling1(n, k)| = (2*n + 2)*A132393(n, k).
n-th row sum equals 2 * floor((n+1)/2)! for n >= 1.
EXAMPLE
Triangle begins
n\k | 0 1 2 3 4 5
- - - - - - - - - - - - - - - - -
0 | 1
1 | 2
2 | 1 1
3 | 0 4
4 | 0 3 1
5 | 0 6 6
6 | 0 5 6 1
7 | 0 16 24 8
8 | 0 14 23 10 1
9 | 0 60 110 60 10
10 | 0 54 105 65 15 1
...
MAPLE
with(combinat):
T := proc (n, k); if irem(n, 2) = 0 then abs(Stirling1((1/2)*n, k)) + (n/2)*abs(Stirling1((n-2)/2, k)) else (n+1)*abs(Stirling1((n-1)/2, k)) end if; end proc:
seq(print(seq(T(n, k), k = 0..floor(n/2))), n = 0..12);
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Peter Bala, Apr 09 2024
STATUS
approved