login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: g.f. (1 - t)^(-x) * (1 + t)^(2-x).
1

%I #9 Apr 14 2024 13:48:03

%S 1,2,1,1,0,4,0,3,1,0,6,6,0,5,6,1,0,16,24,8,0,14,23,10,1,0,60,110,60,

%T 10,0,54,105,65,15,1,0,288,600,420,120,12,0,264,574,435,145,21,1,0,

%U 1680,3836,3150,1190,210,14,0,1560,3682,3199,1330,280,28,1,0,11520,28224,25984,11760,2800,336,16

%N Triangle read by rows: g.f. (1 - t)^(-x) * (1 + t)^(2-x).

%F G.f.: (1 - t)^(-x)*(1 + t)^(2-x) = Sum_{n >= 0} R(n, x)*t^n/floor((n+1)/2)! = 1 + 2*t/1! + (1 + x)*t^2/1! + 4*x*t^3/2! + x*(3 + x)*t^4/2! + 6*x*(1 + x)*t^5/3! + x*(1 + x)*(5 + x)*t^6/3! + 8*x*(1 + x)*(2 + x)*t^7/3! + x*(1 + x)*(2 + x)*(7 + x)*t^8/4! + 10*x*(1 + x)*(2 + x)*(3 + x)*t^9/5! + ....

%F Row polynomials: R(2*n, x) = (2*n - 1 + x) * Product_{i = 0..n-2} (x + i) for n >= 1.

%F R(2*n+1, x) = (2*n + 2) * Product_{i = 0..n-1} (x + i) for n >= 0.

%F T(2*n, k) = |Stirling1(n, k)| + n*|Stirling1(n-1, k)| = A132393(n, k) + n* A132393(n-1, k);

%F T(2*n+1, k) = (2*n + 2)*|Stirling1(n, k)| = (2*n + 2)*A132393(n, k).

%F n-th row sum equals 2 * floor((n+1)/2)! for n >= 1.

%e Triangle begins

%e n\k | 0 1 2 3 4 5

%e - - - - - - - - - - - - - - - - -

%e 0 | 1

%e 1 | 2

%e 2 | 1 1

%e 3 | 0 4

%e 4 | 0 3 1

%e 5 | 0 6 6

%e 6 | 0 5 6 1

%e 7 | 0 16 24 8

%e 8 | 0 14 23 10 1

%e 9 | 0 60 110 60 10

%e 10 | 0 54 105 65 15 1

%e ...

%p with(combinat):

%p T := proc (n, k); if irem(n, 2) = 0 then abs(Stirling1((1/2)*n, k)) + (n/2)*abs(Stirling1((n-2)/2, k)) else (n+1)*abs(Stirling1((n-1)/2, k)) end if; end proc:

%p seq(print(seq(T(n, k), k = 0..floor(n/2))), n = 0..12);

%Y Cf. A052849, A132393, A371741.

%K nonn,tabf,easy

%O 0,2

%A _Peter Bala_, Apr 09 2024