login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A371741
Triangle read by rows: g.f. (1 - t)^(-x) * (1 + t)^(3-x).
1
1, 3, 3, 1, 1, 3, 0, 7, 1, 0, 5, 3, 0, 11, 12, 1, 0, 9, 12, 3, 0, 30, 47, 18, 1, 0, 26, 45, 22, 3, 0, 114, 215, 125, 25, 1, 0, 102, 205, 135, 35, 3, 0, 552, 1174, 855, 265, 33, 1, 0, 504, 1122, 885, 315, 51, 3, 0, 3240, 7518, 6349, 2520, 490, 42, 1, 0, 3000, 7210, 6447, 2800, 630, 70, 3
OFFSET
0,2
FORMULA
G.f.: (1 - t)^(-x)*(1 + t)^(3-x) = Sum_{n >= 0} R(n, x)*t^n/floor(n/2)! = 1 + 3*t + (3 + x)^t^2/1! + (1 + 3*x)*t^3/1! + x*(7 + x)*t^4/2! + x*(5 + 3*x)*t^5/2! + x*(1 + x)*(11 + x)*t^6/3! + x*(1 + x)*(9 + 3*x)*t^7/3! + x*(1 + x)*(2 + x)*(15 + x)*t^8/4! + x*(1 + x)*(2 + x)*(13 + 3*x)*t^9/4! + ....
Row polynomials: R(2*n, x) = (4*n - 1 + x) * Product_{i = 0..n-2} (x + i) for n >= 1.
R(2*n+1, x) = (4*n - 3 + 3*x) * Product_{i = 0..n-2} (x + i) for n >= 1.
T(2*n, k) = |Stirling1(n, k)| + 3*n*|Stirling1(n-1, k)| = A132393(n, k) + 3*n*A132393(n-1, k).
T(2*n+1, k) = 3*|Stirling1(n, k)| + n*|Stirling1(n-1, k)| = 3*A132393(n, k) + n*A132393(n-1, k).
T(2*n, k) = (4*n - 1)*A132393(n-1, k) + A132393(n-1, k-1).
T(2*n+1, k) = (4*n - 3)*A132393(n-1, k) + 3*A132393(n-1, k-1).
n-th row sums equals 4*floor(n/2)! for n >= 2.
EXAMPLE
Triangle begins
n\k | 0 1 2 3 4 5
- - - - - - - - - - - - - - - - - - - -
0 | 1
1 | 3
2 | 3 1
3 | 1 3
4 | 0 7 1
5 | 0 5 3
6 | 0 11 12 1
7 | 0 9 12 3
8 | 0 30 47 18 1
9 | 0 26 45 22 3
10 | 0 114 215 125 25 1
11 | 0 102 205 135 35 3
...
MAPLE
with(combinat):
T := proc (n, k); if irem(n, 2) = 0 then abs(Stirling1((1/2)*n, k)) + (3*n/2)*abs(Stirling1((n-2)/2, k)) else 3*abs(Stirling1((n-1)/2, k)) + ((n-1)/2)*abs(Stirling1((n-3)/2, k)) end if; end proc:
seq(print(seq(T(n, k), k = 0..floor(n/2))), n = 0..12);
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Peter Bala, Apr 05 2024
STATUS
approved