OFFSET
0,2
FORMULA
G.f.: (1 - t)^(-x)*(1 + t)^(3-x) = Sum_{n >= 0} R(n, x)*t^n/floor(n/2)! = 1 + 3*t + (3 + x)^t^2/1! + (1 + 3*x)*t^3/1! + x*(7 + x)*t^4/2! + x*(5 + 3*x)*t^5/2! + x*(1 + x)*(11 + x)*t^6/3! + x*(1 + x)*(9 + 3*x)*t^7/3! + x*(1 + x)*(2 + x)*(15 + x)*t^8/4! + x*(1 + x)*(2 + x)*(13 + 3*x)*t^9/4! + ....
Row polynomials: R(2*n, x) = (4*n - 1 + x) * Product_{i = 0..n-2} (x + i) for n >= 1.
R(2*n+1, x) = (4*n - 3 + 3*x) * Product_{i = 0..n-2} (x + i) for n >= 1.
n-th row sums equals 4*floor(n/2)! for n >= 2.
EXAMPLE
Triangle begins
n\k | 0 1 2 3 4 5
- - - - - - - - - - - - - - - - - - - -
0 | 1
1 | 3
2 | 3 1
3 | 1 3
4 | 0 7 1
5 | 0 5 3
6 | 0 11 12 1
7 | 0 9 12 3
8 | 0 30 47 18 1
9 | 0 26 45 22 3
10 | 0 114 215 125 25 1
11 | 0 102 205 135 35 3
...
MAPLE
with(combinat):
T := proc (n, k); if irem(n, 2) = 0 then abs(Stirling1((1/2)*n, k)) + (3*n/2)*abs(Stirling1((n-2)/2, k)) else 3*abs(Stirling1((n-1)/2, k)) + ((n-1)/2)*abs(Stirling1((n-3)/2, k)) end if; end proc:
seq(print(seq(T(n, k), k = 0..floor(n/2))), n = 0..12);
CROSSREFS
KEYWORD
nonn,tabf,easy
AUTHOR
Peter Bala, Apr 05 2024
STATUS
approved