Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Apr 14 2024 13:47:48
%S 1,3,3,1,1,3,0,7,1,0,5,3,0,11,12,1,0,9,12,3,0,30,47,18,1,0,26,45,22,3,
%T 0,114,215,125,25,1,0,102,205,135,35,3,0,552,1174,855,265,33,1,0,504,
%U 1122,885,315,51,3,0,3240,7518,6349,2520,490,42,1,0,3000,7210,6447,2800,630,70,3
%N Triangle read by rows: g.f. (1 - t)^(-x) * (1 + t)^(3-x).
%F G.f.: (1 - t)^(-x)*(1 + t)^(3-x) = Sum_{n >= 0} R(n, x)*t^n/floor(n/2)! = 1 + 3*t + (3 + x)^t^2/1! + (1 + 3*x)*t^3/1! + x*(7 + x)*t^4/2! + x*(5 + 3*x)*t^5/2! + x*(1 + x)*(11 + x)*t^6/3! + x*(1 + x)*(9 + 3*x)*t^7/3! + x*(1 + x)*(2 + x)*(15 + x)*t^8/4! + x*(1 + x)*(2 + x)*(13 + 3*x)*t^9/4! + ....
%F Row polynomials: R(2*n, x) = (4*n - 1 + x) * Product_{i = 0..n-2} (x + i) for n >= 1.
%F R(2*n+1, x) = (4*n - 3 + 3*x) * Product_{i = 0..n-2} (x + i) for n >= 1.
%F T(2*n, k) = |Stirling1(n, k)| + 3*n*|Stirling1(n-1, k)| = A132393(n, k) + 3*n*A132393(n-1, k).
%F T(2*n+1, k) = 3*|Stirling1(n, k)| + n*|Stirling1(n-1, k)| = 3*A132393(n, k) + n*A132393(n-1, k).
%F T(2*n, k) = (4*n - 1)*A132393(n-1, k) + A132393(n-1, k-1).
%F T(2*n+1, k) = (4*n - 3)*A132393(n-1, k) + 3*A132393(n-1, k-1).
%F n-th row sums equals 4*floor(n/2)! for n >= 2.
%e Triangle begins
%e n\k | 0 1 2 3 4 5
%e - - - - - - - - - - - - - - - - - - - -
%e 0 | 1
%e 1 | 3
%e 2 | 3 1
%e 3 | 1 3
%e 4 | 0 7 1
%e 5 | 0 5 3
%e 6 | 0 11 12 1
%e 7 | 0 9 12 3
%e 8 | 0 30 47 18 1
%e 9 | 0 26 45 22 3
%e 10 | 0 114 215 125 25 1
%e 11 | 0 102 205 135 35 3
%e ...
%p with(combinat):
%p T := proc (n, k); if irem(n, 2) = 0 then abs(Stirling1((1/2)*n, k)) + (3*n/2)*abs(Stirling1((n-2)/2, k)) else 3*abs(Stirling1((n-1)/2, k)) + ((n-1)/2)*abs(Stirling1((n-3)/2, k)) end if; end proc:
%p seq(print(seq(T(n, k), k = 0..floor(n/2))), n = 0..12);
%Y Cf. A130534, A132393, A371740.
%K nonn,tabf,easy
%O 0,2
%A _Peter Bala_, Apr 05 2024