OFFSET
0,3
COMMENTS
We have p(x) = (x - c(1))*(x - c(2))*(x - c(4)), where c(j) := 2*cos(2*Pi*j/7). We note that c(4) = c(3) = -c(1/2), c(1) = s(3) and c(2) = -s(1), where s(j) := 2*sin(Pi*j/14). Moreover we obtain -p(-x) = x^3 - x^2 - 2*x + 1 = (x + c(1))*(x + c(2))*(x + c(4)), q(x) := -x^3*p(1/x) = x^3 + 2*x^2 + x - 1 = (x - c(1)^(-1))*(x - c(2)^(-1))*(x - c(4)^(-1)), and -q(-x) = x^3 - 2*x^2 + x + 1 = (x + c(1)^(-1))*(x + c(2)^(-1))*(x + c(4)^(-1)).
We also have p(x+2) = x^3 + 7*x^2 + 14*x + 7 = (x + s(2)^2)*(x + s(4)^2)*(x + s(6)^2). The polynomial -p(-x-2) = x^3 - 7*x^2 + 14*x - 7 = (x - s(2)^2)*(x - s(4)^2)*(x - s(6)^2) is known as Johannes Kepler's cubic polynomial (see Witula's book).
Let us set r(x) := p(x+1). It can be verified that -x^3*r(1/x) = x^3 - 3*x^2 - 4*x - 1 = (x - c(1)/c(4))*(x - c(4)/c(2))*(x - c(2)/c(1)); for example, we have c(1)^3 + c(1)^2 - 2*c(1) - 1 = 0 which implies that c(1)^2 + 2*c(1) = 1/(c(1) - 1), and then c(1)^2 + 2*c(1) = c(4)/c(2) since c(4)/c(2) = (c(1)^4 - 4*c(1)^2 + 2)/(c(1)^2 - 2).
The polynomials p(x+n) and the ones obtained as above (i.e., after simple algebraic transformations) are the characteristic polynomials of many sequences in the OEIS; see crossrefs.
REFERENCES
R. Witula, Complex Numbers, Polynomials and Partial Fraction Decomposition, Part 3, Wydawnictwo Politechniki Slaskiej, Gliwice 2010 (Silesian Technical University publishers).
FORMULA
We have a(4*k) = 1, a(4*k + 1) = 3*k + 1, a(4*k + 2) = 3*k^2 + 2*k - 2, a(4*k + 3) = k^3 + k^2 - 2*k - 1. Further, the following relations hold true: b(k+1) = b(k) + 3, c(k+1) = 2*b(k) -2*c(k) + 3, d(k+1) = b(k) - 2*c(k) - d(k) + 1, where p(x + k) = x^3 + b(k)*x^2 + c(k)*x + d(k).
Empirical g.f.: -(x^15 - x^14 - 2*x^13 + x^12 - 5*x^11 + 10*x^10 + 3*x^9 - 3*x^8 - 3*x^7 - 11*x^6 + 3*x^4 + x^3 + 2*x^2 - x - 1) / ((x-1)^4*(x+1)^4*(x^2+1)^4). - Colin Barker, May 17 2013
CROSSREFS
KEYWORD
sign
AUTHOR
Roman Witula, Nov 04 2012
STATUS
approved