login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A096975
Trace sequence of a path graph plus loop.
6
3, 1, 5, 4, 13, 16, 38, 57, 117, 193, 370, 639, 1186, 2094, 3827, 6829, 12389, 22220, 40169, 72220, 130338, 234609, 423065, 761945, 1373466, 2474291, 4459278, 8034394, 14478659, 26088169, 47011093, 84708772, 152642789, 275049240
OFFSET
0,1
COMMENTS
Let A be the adjacency matrix of the graph P_3 with a loop added at the end. Then a(n) = trace(A^n). A is a 'reverse Jordan matrix' [0,0,1;0,1,1;1,1,0]. a(n) = abs(A094648(n)).
From L. Edson Jeffery, Mar 22 2011: (Start)
Let A be the unit-primitive matrix (see [Jeffery])
A = A_(7,1) =
(0 1 0)
(1 0 1)
(0 1 1).
Then a(n) = Trace(A^n). (End)
LINKS
A. Akbary, Q. Wang, A generalized Lucas sequence and permutations binomials, Proc. Am. Math. Soc. 134 (2006) 15-22, sequence a(n) with l=7.
Robin Chapman and Nicholas C. Singer, Eigenvalues of a bidiagonal matrix, Amer. Math. Monthly, 111 (2004), p. 441.
Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022.
L. E. Jeffery, Unit-primitive matrix
Genki Shibukawa, New identities for some symmetric polynomials and their applications, arXiv:1907.00334 [math.CA], 2019.
Q. Wang, On generalized Lucas sequences, Contemp. Math. 531 (2010) 127-141, Table 1 (k=3).
FORMULA
G.f.: (3-2*x-2*x^2)/(1-x-2*x^2+x^3);
a(n) = a(n-1) + 2*a(n-2) - a(n-3);
a(n) = (2*sqrt(7)*sin(atan(sqrt(3)/9)/3)/3+1/3)^n + (1/3-2*sqrt(7)*sin(atan(sqrt(3)/9)/3+Pi/3)/3)^n + (2*sqrt(7)*cos(acot(-sqrt(3)/9)/3)/3+1/3)^n.
a(n) = 2^n*((cos(Pi/7))^n+(cos(3*Pi/7))^n+(cos(5*Pi/7))^n). - Vladimir Shevelev, Aug 25 2010
a(n) = (-1)^n*A094648(n). - R. J. Mathar, Nov 05 2024
MATHEMATICA
CoefficientList[Series[(3 - 2 x - 2 x^2)/(1 - x - 2 x^2 + x^3), {x, 0, 33}], x] (* Michael De Vlieger, Aug 21 2019 *)
PROG
(PARI) {a(n)=if(n>=0, n+=1; polsym(x^3-x^2-2*x+1, n-1)[n], n=1-n; polsym(1-x-2*x^2+x^3, n-1)[n])} /* Michael Somos, Aug 03 2006 */
(PARI) a(n)=trace([0, 1, 0; 1, 0, 1; 0, 1, 1]^n); /* Joerg Arndt, Apr 30 2011 */
CROSSREFS
A033304(n) = a(-1-n). - Michael Somos, Aug 03 2006
Sequence in context: A096374 A007085 A094648 * A145174 A372283 A351965
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 16 2004
STATUS
approved