The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A052547 Expansion of (1-x)/(1-x-2*x^2+x^3). 21
 1, 0, 2, 1, 5, 5, 14, 19, 42, 66, 131, 221, 417, 728, 1341, 2380, 4334, 7753, 14041, 25213, 45542, 81927, 147798, 266110, 479779, 864201, 1557649, 2806272, 5057369, 9112264, 16420730, 29587889, 53317085, 96072133, 173118414, 311945595, 562110290, 1012883066 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Form the graph with matrix A=[0,1,1;1,0,0;1,0,1] (P_3 with a loop at an extremity). Then A052547 counts closed walks of length n at the degree 2 vertex. - Paul Barry, Oct 02 2004 The characteristic polynomial x^3 - x^2 - 2*x + 1 generates a 3 step recursion: a(0)=1,a(1)=0,a(2)=2, for n>2 a(n)=a(n-1)+2*a(n-2)-a(n-3) so we can also prepend the term 1,0 to a(n) and get the same sequence, i.e. start with a(0)=1,a(1)=0,a(2)=1. - Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 30 2005 The length of the diagonals (including the side) of a regular 7-gon (heptagon) inscribed in a circle of radius r=1 are d_1=2*sin(Pi/7) (the side length), d_2=2*cos(Pi/7)*d_1, and d_3=2*sin(3*Pi/7). The two ratios are rho := R_2 = d_2/d_1 = 2*cos(Pi/7) approximately 1.801937736, and sigma:= R_3 = d_3/d_1 = S(2,rho) = rho^2-1, approximately 2.246979604. See A049310 for Chebyshev S-polynomials. See the Steinbach reference where the basis <1,rho,sigma> has been considered for an extension of the rational field Q, which is there called Q(rho). This rho is the largest zero of S(6,x). For nonnegative powers of rho one has rho^n = C(n)*1 + B(n)*rho + A(n)*sigma, with B(n)=a(n-1), a(-1):=0, a(-2):=1, A(n)=B(n+1)-B(n-1)= A006053(n), and C(n)=B(n-1)=a(n-2), n>=0. For negative powers see A106803 and -A006054. For nonnegative and negative powers of sigma see A006054, A106803 and a(n), -A006053, respectively. a(n) appears also in the formula for the nonpositive powers of sigma (see the comment above for the definition and the Steinbach basis) as sigma^(-n) = a(n)*1 - A006053(n+1)*rho - a(n-1)*sigma, n>=0. Put a(-1):=0. 1/sigma=sigma-rho, the smallest positive zero of S(6,x) (see A049310 for Chebyshev S-polynomials). - Wolfdieter Lang, Dec 01 2010 LINKS G. C. Greubel, Table of n, a(n) for n = 0..1000 Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021. Tomislav Došlić, Mate Puljiz, Stjepan Šebek, and Josip Žubrinić, On a variant of Flory model, arXiv:2210.12411 [math.CO], 2022. Man Gao, Colin Tan, and Jie Wu, Loop homological invariants associated to real projective spaces, Topology Appl. 209, 275-288 (2016). M. Gao and J. Wu, Homology Decompositions of the Loops on 1-Stunted Borel Constructions of C_2-Actions, arXiv:1301.0864 [math.AT], 2013. Jia Huang, Partially Palindromic Compositions, J. Int. Seq. (2023) Vol. 26, Art. 23.4.1. See pp. 4, 15. INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 483 P. Steinbach, Golden fields: a case for the heptagon, Math. Mag. 70 (1997), no. 1, 22-31. Index entries for linear recurrences with constant coefficients, signature (1,2,-1). FORMULA a(n) = a(n-1) + 2*a(n-2) - a(n-3), with a(0)=1, a(1)=0, a(2)=2. a(n) = Sum(-1/7*_alpha*(-3+_alpha)*_alpha^(-1-n), _alpha=RootOf(_Z^3-2*_Z^2-_Z+1)). a(n) = 5*a(n-2) - 6*a(n-4) + a(n-6). - Floor van Lamoen, Nov 02 2005 MAPLE spec := [S, {S=Sequence(Prod(Z, Union(Z, Prod(Z, Sequence(Z)))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..40); MATHEMATICA LinearRecurrence[{1, 2, -1}, {1, 0, 2}, 40] (* Vladimir Joseph Stephan Orlovsky, Feb 13 2012 *) PROG (PARI) {a(n) = if(n==0, 1, if(n==1, 0, if(n==2, 2, a(n-1)+2*a(n-2)-a(n-3))))}; for(i=0, 40, print1(a(i), ", ")) \\ Lambert Klasen, Jan 30 2005 (Magma) I:=[1, 0, 2]; [n le 3 select I[n] else Self(n-1) + 2*Self(n-2) - Self(n-3): n in [1..40]]; // G. C. Greubel, May 08 2019 (Sage) ((1-x)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019 (GAP) a:=[1, 0, 2];; for n in [4..40] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, May 08 2019 CROSSREFS Cf. A096976; second differences of A028495 and first differences of A006053 (up to an offset). Sequence in context: A074392 A284428 A096976 * A119245 A128731 A129157 Adjacent sequences: A052544 A052545 A052546 * A052548 A052549 A052550 KEYWORD easy,nonn AUTHOR encyclopedia(AT)pommard.inria.fr, Jan 25 2000 EXTENSIONS More terms from James A. Sellers, Jun 05 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 07:49 EST 2023. Contains 367510 sequences. (Running on oeis4.)