

A052547


Expansion of (1x)/(1x2*x^2+x^3).


21



1, 0, 2, 1, 5, 5, 14, 19, 42, 66, 131, 221, 417, 728, 1341, 2380, 4334, 7753, 14041, 25213, 45542, 81927, 147798, 266110, 479779, 864201, 1557649, 2806272, 5057369, 9112264, 16420730, 29587889, 53317085, 96072133, 173118414, 311945595, 562110290, 1012883066
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


COMMENTS

Form the graph with matrix A=[0,1,1;1,0,0;1,0,1] (P_3 with a loop at an extremity). Then A052547 counts closed walks of length n at the degree 2 vertex.  Paul Barry, Oct 02 2004
The characteristic polynomial x^3  x^2  2*x + 1 generates a 3 step recursion: a(0)=1,a(1)=0,a(2)=2, for n>2 a(n)=a(n1)+2*a(n2)a(n3) so we can also prepend the term 1,0 to a(n) and get the same sequence, i.e. start with a(0)=1,a(1)=0,a(2)=1.  Lambert Klasen (lambert.klasen(AT)gmx.net), Jan 30 2005
The length of the diagonals (including the side) of a regular 7gon (heptagon) inscribed in a circle of radius r=1 are d_1=2*sin(Pi/7) (the side length), d_2=2*cos(Pi/7)*d_1, and d_3=2*sin(3*Pi/7). The two ratios are rho := R_2 = d_2/d_1 = 2*cos(Pi/7) approximately 1.801937736, and sigma:= R_3 = d_3/d_1 = S(2,rho) = rho^21, approximately 2.246979604. See A049310 for Chebyshev Spolynomials. See the Steinbach reference where the basis <1,rho,sigma> has been considered for an extension of the rational field Q, which is there called Q(rho). This rho is the largest zero of S(6,x). For nonnegative powers of rho one has rho^n = C(n)*1 + B(n)*rho + A(n)*sigma, with B(n)=a(n1), a(1):=0, a(2):=1, A(n)=B(n+1)B(n1)= A006053(n), and C(n)=B(n1)=a(n2), n>=0. For negative powers see A106803 and A006054. For nonnegative and negative powers of sigma see A006054, A106803 and a(n), A006053, respectively.
a(n) appears also in the formula for the nonpositive powers of sigma (see the comment above for the definition and the Steinbach basis) as sigma^(n) = a(n)*1  A006053(n+1)*rho  a(n1)*sigma, n>=0. Put a(1):=0. 1/sigma=sigmarho, the smallest positive zero of S(6,x) (see A049310 for Chebyshev Spolynomials).  Wolfdieter Lang, Dec 01 2010


LINKS



FORMULA

a(n) = a(n1) + 2*a(n2)  a(n3), with a(0)=1, a(1)=0, a(2)=2.
a(n) = Sum(1/7*_alpha*(3+_alpha)*_alpha^(1n), _alpha=RootOf(_Z^32*_Z^2_Z+1)).


MAPLE

spec := [S, {S=Sequence(Prod(Z, Union(Z, Prod(Z, Sequence(Z)))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..40);


MATHEMATICA



PROG

(PARI) {a(n) = if(n==0, 1, if(n==1, 0, if(n==2, 2, a(n1)+2*a(n2)a(n3))))};
for(i=0, 40, print1(a(i), ", ")) \\ Lambert Klasen, Jan 30 2005
(Magma) I:=[1, 0, 2]; [n le 3 select I[n] else Self(n1) + 2*Self(n2)  Self(n3): n in [1..40]]; // G. C. Greubel, May 08 2019
(Sage) ((1x)/(1x2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
(GAP) a:=[1, 0, 2];; for n in [4..40] do a[n]:=a[n1]+2*a[n2]a[n3]; od; a; # G. C. Greubel, May 08 2019


CROSSREFS



KEYWORD

easy,nonn


AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000


EXTENSIONS



STATUS

approved



