OFFSET
0,3
COMMENTS
(1, 4, 11, 32, ...) = INVERT transform of (1, 3, 4, 5, 6, 7, ...).
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 481
Index entries for linear recurrences with constant coefficients, signature (3,0,-1).
FORMULA
G.f.: (1-x)^2/(1-3*x+x^3).
a(n) = 3*a(n-1) - a(n-3), with a(0)=a(1)=1, a(2)=4.
a(n) = Sum_{alpha = RootOf(1-3*x+x^3)} (-1/9 * (-1+2*alpha^2-2*alpha) * alpha^(-1-n)).
MAPLE
spec := [S, {S=Sequence(Prod(Z, Union(Z, Sequence(Z)), Sequence(Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
LinearRecurrence[{3, 0, -1}, {1, 1, 4}, 40] (* G. C. Greubel, May 08 2019 *)
PROG
(Python)
TOP = 33
a = [1]*TOP
a[2]=4
for n in range(3, TOP):
print(a[n-3], end=', ')
a[n] = 3*a[n-1] - a[n-3]
# Alex Ratushnyak, Aug 10 2012
(PARI) my(x='x+O('x^40)); Vec((1-x)^2/(1-3*x+x^3)) \\ G. C. Greubel, May 08 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)^2/(1-3*x+x^3) )); // G. C. Greubel, May 08 2019
(Sage) ((1-x)^2/(1-3*x+x^3)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
(GAP) a:=[1, 1, 4];; for n in [4..40] do a[n]:=3*a[n-1]-a[n-3]; od; a; # G. C. Greubel, May 08 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved