login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A289246
Coefficients in the expansion of 1/Sum_{k >= 0} ([r*(k + 1)] + [s*(k + 1)]) * (-x)^k, where [ ] = floor, r = (1+sqrt(5))/2, s = 1/r.
0
1, 4, 11, 32, 94, 272, 786, 2272, 6564, 18962, 54780, 158254, 457174, 1320712, 3815354, 11022024, 31841080, 91984410, 265730044, 767656774, 2217652596, 6406486864, 18507440702, 53465396640, 154454021166, 446195972602, 1288997492332, 3723732703246
OFFSET
0,2
COMMENTS
Conjecture: the sequence is strictly increasing.
FORMULA
G.f.: 1/Sum_{k >= 0} ([r*(k + 1)] + [s*(k + 1)]) * (-x)^k, where [ ] = floor, r = (1+sqrt(5))/2, s = 1/r.
MATHEMATICA
r = GoldenRatio; s = 1/GoldenRatio;
CoefficientList[Series[1/Sum[(Floor[r*(k + 1)] + Floor[s*(k + 1)]) (-x)^k, {k, 0, 1000}], {x, 0, 50}], x]
CROSSREFS
Cf. A078140.
Sequence in context: A052545 A183114 A183119 * A199109 A025268 A178520
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Aug 09 2017
STATUS
approved