login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A178520 Number of ordered trees with n edges and with no vertex of outdegree 2 that have two leaves as their two children. 2
1, 1, 1, 4, 11, 32, 98, 309, 998, 3285, 10981, 37178, 127227, 439369, 1529280, 5359314, 18894435, 66967086, 238473876, 852825314, 3061529014, 11028596473, 39853923390, 144435373636, 524837483375, 1911763716717, 6979451843306 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Empirical: for n >= 3, a(n) is the number of Dyck n-paths avoiding UUUDDD. E.g., of the 5 Dyck 3-paths UUUDDD is avoided so a(3)=4. - David Scambler, Mar 24 2011

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000

FORMULA

a(n) = A178519(n,0).

G.f.: G=G(z) satisfies (G+z^2)*(1-z*G)=1.

a(n) ~ sqrt((1+r)*(1-r+r^2)*(1-5*r^3)) / (4*sqrt(Pi)*n^(3/2)*r^(n+1)), where r = 0.2587353940253970315668... is the root of the equation (1+r^3)^2 = 4*r. - Vaclav Kotesovec, Mar 21 2014

EXAMPLE

a(3)=4 because among the 5 ordered trees with 3 edges only -< has a forbidden vertex (the root).

MAPLE

eq := z*G^2-(1-z^3)*G+1-z^2; G := RootOf(eq, G): Gser := series(G, z = 0, 30): seq(coeff(Gser, z, n), n = 0 .. 27);

MATHEMATICA

CoefficientList[Series[(1-x^3-Sqrt[1-4*x+2*x^3+x^6])/(2*x), {x, 0, 20}], x] (* Vaclav Kotesovec, Mar 21 2014 *)

PROG

(PARI) x='x+O('x^50); Vec((1-x^3-sqrt(1-4*x+2*x^3+x^6))/(2*x)) \\ G. C. Greubel, Mar 24 2017

CROSSREFS

Cf. A178519.

Sequence in context: A289246 A199109 A025268 * A149232 A149233 A273038

Adjacent sequences:  A178517 A178518 A178519 * A178521 A178522 A178523

KEYWORD

nonn

AUTHOR

Emeric Deutsch, May 31 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 17 14:22 EDT 2018. Contains 316281 sequences. (Running on oeis4.)