login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A025268
a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5.
2
1, 1, 1, 1, 4, 11, 32, 95, 284, 860, 2630, 8115, 25242, 79080, 249342, 790719, 2520546, 8072216, 25961150, 83814536, 271538192, 882527618, 2876712308, 9402284815, 30806948110, 101172278362, 332965892290, 1097990333320, 3627433618396
OFFSET
1,5
LINKS
FORMULA
Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([1,1,1,1]). - Gary W. Adamson, Oct 27 2008
Conjecture: n*a(n) +(n+1)*a(n-1) +10*(-2*n+5)*a(n-2) +2*(2*n-9)*a(n-3) +2*(14*n-79)*a(n-4) +40*(n-7)*a(n-5)=0. - R. J. Mathar, Jan 25 2015
G.f.: 1/2 - sqrt(8*x^4+4*x^3-4*x+1)/2. - Vaclav Kotesovec, Jan 25 2015
Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 2*(2*n-9)*a(n-3) - 8*(n-6)*a(n-4). - Vaclav Kotesovec, Jan 25 2015
MAPLE
Phi:=proc(t, u, M) local i, a; a:=Array(0..M);
for i from 0 to t-1 do a[i]:=u[i+1]; od:
for i from t to M do a[i]:=a[i-1]+add(a[j]*a[i-1-j], j=0..i-2); od:
[seq(a[i], i=0..M)]; end;
Phi(4, [1, 1, 1, 1], 30);
# N. J. A. Sloane, Oct 29 2008
MATHEMATICA
nmax = 30; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 1; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]], {k, 1, n-1}], {n, 5, nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *)
CROSSREFS
Sequence in context: A183119 A289246 A199109 * A178520 A306419 A376071
KEYWORD
nonn
STATUS
approved