This site is supported by donations to The OEIS Foundation.

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025262 a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 4. 8
 1, 1, 1, 3, 8, 23, 68, 207, 644, 2040, 6558, 21343, 70186, 232864, 778550, 2620459, 8872074, 30195288, 103246502, 354508628, 1221846856, 4225644866, 14659644348, 51002664023, 177909901566, 622093882290, 2180123564130, 7656055966092 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..1766 Paul Barry, On the Hurwitz Transform of Sequences, Journal of Integer Sequences, Vol. 15 (2012), #12.8.7. M. Somos, Number Walls in Combinatorics. Fumitaka Yura, Hankel Determinant Solution for Elliptic Sequence, arXiv:1411.6972 [nlin.SI], (25-November-2014); see p. 7 FORMULA G.f.: (1 - sqrt(1 - 4*x + 4*x^3)) / 2. Satisfies A(x) - A(x)^2 = x - x^3. - Michael Somos, Aug 04, 2000 Comment from Gary W. Adamson, Oct 27 2008: Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([1,1,1]). Row sums of A176703 if offset 0. - Michael Somos, Jan 09 2012 a(n+2) = A056010(n) if n >= 0. Conjecture: n*a(n) +(n+1)*a(n-1) +10*(-2*n+5)*a(n-2) +2*(2*n-9)*a(n-3) +10*(2*n-11)*a(n-4)=0. - R. J. Mathar, Nov 26 2012 a(n)=sum(m=0..floor((n-1)/2), C(n-2*m-1)*binomial(n-2*m,m)*(-1)^m), where C = A000108 are the Catalan numbers. - Vladimir Kruchinin, Jan 26 2013 0 = a(n)*(+16*a(n+1) - 64*a(n+3) + 22*a(n+4)) + a(n+1)*(+32*a(n+2) - 14*a(n+3)) + a(n+2)*(+16*a(n+3) - 10*a(n+4)) + a(n+3)*(+2*a(n+3) + a(n+4)) if n>0. - Michael Somos, Jan 18 2015 Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 2*(2*n-9)*a(n-3). - Vaclav Kotesovec, Jan 25 2015 EXAMPLE G.f. = x + x^2 + x^3 + 3*x^4 + 8*x^5 + 23*x^6 + 68*x^7 + 207*x^8 + 644*x^9 + ... MATHEMATICA nmax = 30; aa = ConstantArray[0, nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 1; Do[aa[[n]]=Sum[aa[[k]]*aa[[n-k]], {k, 1, n-1}], {n, 4, nmax}]; aa (* Vaclav Kotesovec, Jan 25 2015 *) PROG (PARI) {a(n) = polcoeff( (1 - sqrt(1 - 4*x + 4*x^3 + x * O(x^n))) / 2, n)}; /* Michael Somos, Aug 04 2000 */ CROSSREFS Cf. A000108, A176703, A056010, A025268. Sequence in context: A199103 A057198 * A056010 A002712 A192679 A193418 Adjacent sequences:  A025259 A025260 A025261 * A025263 A025264 A025265 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.