OFFSET
0,6
COMMENTS
This sequence has a recursion same as the Somos-4 sequence recursion.
a(n+1) is the Hankel transform of A178072. - Paul Barry, May 19 2010
The recurrence formulas in [Kimberling, p. 16] are missing square and cube exponents. - Michael Somos, Jul 07 2014
This is a strong elliptic divisibility sequence t_n as given in [Kimberling, p. 16] where x = 1, y = -1, z = 1.
From Helmut Ruhland, Nov 28 2023: (Start)
This sequence and its two subsequences with even/odd indices satisfy the Somos-4 recursion.
The even subsequence is A051138, here called r[ ]. The odd subsequence is the classical Somos-4 A006720, here called s[ ].
These two subsequences interleaved as follows, recover the original sequence which is now: r[0], s[2], r[1], -s[3], r[2], s[4], r[3], -s[5], ..., all Somos-4 s[ ] with odd index with a minus sign. (End)
REFERENCES
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; pp. 11 and 164.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..300 (first 101 terms from T. D. Noe)
Paul Barry, Riordan Pseudo-Involutions, Continued Fractions and Somos 4 Sequences, arXiv:1807.05794 [math.CO], 2018.
Paul Barry, Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials, arXiv:1910.00875 [math.CO], 2019.
Paul Barry, Riordan arrays, the A-matrix, and Somos 4 sequences, arXiv:1912.01126 [math.CO], 2019.
Paul Barry, Integer sequences from elliptic curves, arXiv:2306.05025 [math.NT], 2023.
H. W. Braden, V. Z. Enolskii and A. N. W. Hone, Bilinear recurrences and addition formulas for hyperelliptic sigma functions, arXiv:math/0501162 [math.NT], 2005.
Graham Everest, Elliptic Divisibility Sequences.
R. W. Gosper and Richard C. Schroeppel, Somos Sequence Near-Addition Formulas and Modular Theta Functions, arXiv:math/0703470 [math.NT], 2007.
Clark Kimberling, Strong divisibility sequences and some conjectures, Fib. Quart., 17 (1979), 13-17.
Helmut Ruhland, Somos-4 and a quartic Surface in RP^3, arXiv:2312.02085 [math.AG], 2023.
Michael Somos, Number Walls in Combinatorics
FORMULA
a(n) = (a(n-1) * a(n-3) + a(n-2)^2) / a(n-4) for all n != 4.
a(n) = (-a(n-1) * a(n-4) - a(n-2) * a(n-3)) / a(n-5) for all n != 5.
a(-n) = -a(n) for all n.
a(2*n + 1) = a(n+2) * a(n)^3 - a(n-1) * a(n+1)^3, a(2*n) = a(n+2) * a(n) * a(n-1)^2 - a(n) * a(n-2) * a(n+1)^2 for all n.
a(2*n) = A051138(n). - Michael Somos, Feb 10 2015
a(2*n+1) = a(n-1)*a(n)^2*a(n+3) - a(n-2)*a(n+1)^2*a(n+2) for all n. - Michael Somos, Aug 20 2024
MATHEMATICA
a[n_] := If[n < 0, -a[-n], If[n == 0, 0, ClearAll[an]; an[_] = 1; an[3] = -1; For[k = 5, k <= n, k++, an[k] = (an[k-1]*an[k-3] + an[k-2]^2)/an[k-4]]; an[n]]]; Table[a[n], {n, 0, 32}] (* Jean-François Alcover, Dec 14 2011, after first Pari program *)
Join[{0}, RecurrenceTable[{a[1]==a[2]==1, a[3]==-1, a[4]==1, a[n]==(a[n-1] a[n-3]+ a[n-2]^2)/a[n-4]}, a, {n, 40}]] (* Harvey P. Dale, May 04 2018 *)
a[ n_] := Which[n<0, -a[-n], n<5, {0, 1, 1, -1, 1}[[1+n]], True, (a[n-1]*a[n-3] + a[n-2]^2)/a[n-4]]; (* Michael Somos, Aug 20 2024 *)
PROG
(PARI) {a(n) = my(an); if( n<0, -a(-n), if( n==0, 0, an = vector( max(3, n), i, 1); an[3] = -1; for( k=5, n, an[k] = (an[k-1] * an[k-3] + an[k-2]^2) / an[k-4]); an[n]))};
(PARI) {a(n) = my(an); if( n<0, -a(-n), if( n==0, 0, an = Vec((-1 - 2*x + sqrt(1 + 4*x - 4*x^3 + O(x^n))) / (2 * x^2)); matdet( matrix((n-1)\2, (n-1)\2, i, j, if(i + j - 1 - n%2<0, 0, an[i + j -n%2])))))};
(PARI) {a(n) = my(E, z); E = ellinit([0, 0, -1, -1, 0]); z = ellpointtoz(E, [0, 0]); round( ellsigma(E, n*z) / ellsigma(E, z)^(n^2))}; /* Michael Somos, Oct 22 2004 */
(PARI) {a(n) = sign(n) * subst( elldivpol( ellinit([0, 0, -1, -1, 0]), abs(n)), x, 0)}; /* Michael Somos, Dec 16 2014 */
(Haskell)
a006769 n = a050512_list !! n
a006769_list = 0 : 1 : 1 : (-1) : 1 : zipWith div (zipWith (+) (zipWith (*)
(drop 4 a006769_list) (drop 2 a006769_list))
(map (^ 2) (drop 3 a006769_list))) (tail a006769_list)
-- Reinhard Zumkeller, Nov 02 2011
CROSSREFS
KEYWORD
sign,easy,nice
AUTHOR
Michael Somos, Jul 16 1999
STATUS
approved