login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5.
2

%I #24 Nov 19 2016 04:45:48

%S 1,1,1,1,4,11,32,95,284,860,2630,8115,25242,79080,249342,790719,

%T 2520546,8072216,25961150,83814536,271538192,882527618,2876712308,

%U 9402284815,30806948110,101172278362,332965892290,1097990333320,3627433618396

%N a(n) = a(1)*a(n-1) + a(2)*a(n-2) + ...+ a(n-1)*a(1) for n >= 5.

%H Seiichi Manyama, <a href="/A025268/b025268.txt">Table of n, a(n) for n = 1..1857</a>

%F Given an integer t >= 1 and initial values u = [a_0, a_1, ..., a_{t-1}], we may define an infinite sequence Phi(u) by setting a_n = a_{n-1} + a_0*a_{n-1} + a_1*a_{n-2} + ... + a_{n-2}*a_1 for n >= t. For example, Phi([1]) is the Catalan numbers A000108. The present sequence is Phi([1,1,1,1]). - _Gary W. Adamson_, Oct 27 2008

%F Conjecture: n*a(n) +(n+1)*a(n-1) +10*(-2*n+5)*a(n-2) +2*(2*n-9)*a(n-3) +2*(14*n-79)*a(n-4) +40*(n-7)*a(n-5)=0. - _R. J. Mathar_, Jan 25 2015

%F G.f.: 1/2 - sqrt(8*x^4+4*x^3-4*x+1)/2. - _Vaclav Kotesovec_, Jan 25 2015

%F Recurrence: n*a(n) = 2*(2*n-3)*a(n-1) - 2*(2*n-9)*a(n-3) - 8*(n-6)*a(n-4). - _Vaclav Kotesovec_, Jan 25 2015

%p Phi:=proc(t,u,M) local i,a; a:=Array(0..M);

%p for i from 0 to t-1 do a[i]:=u[i+1]; od:

%p for i from t to M do a[i]:=a[i-1]+add(a[j]*a[i-1-j],j=0..i-2); od:

%p [seq(a[i],i=0..M)]; end;

%p Phi(4,[1,1,1,1],30);

%p # _N. J. A. Sloane_, Oct 29 2008

%t nmax = 30; aa = ConstantArray[0,nmax]; aa[[1]] = 1; aa[[2]] = 1; aa[[3]] = 1; aa[[4]] = 1; Do[aa[[n]] = Sum[aa[[k]]*aa[[n-k]],{k,1,n-1}],{n,5,nmax}]; aa (* _Vaclav Kotesovec_, Jan 25 2015 *)

%Y Cf. A000108, A025262.

%K nonn

%O 1,5

%A _Clark Kimberling_