login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A178522
Triangle read by rows: T(n,k) is the number of nodes at level k in the Fibonacci tree of order n (n>=0, 0<=k<=n-1).
7
1, 1, 1, 2, 1, 2, 2, 1, 2, 4, 2, 1, 2, 4, 6, 2, 1, 2, 4, 8, 8, 2, 1, 2, 4, 8, 14, 10, 2, 1, 2, 4, 8, 16, 22, 12, 2, 1, 2, 4, 8, 16, 30, 32, 14, 2, 1, 2, 4, 8, 16, 32, 52, 44, 16, 2, 1, 2, 4, 8, 16, 32, 62, 84, 58, 18, 2, 1, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 2, 1, 2, 4, 8, 16, 32, 64, 126
OFFSET
0,4
COMMENTS
A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node.
Sum of entries in row n is A001595(n).
Sum_{k=0..n-1} k*T(n,k) = A178523(n).
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
LINKS
Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
FORMULA
G.f.: G(t,z)=(1-tz+tz^2)/[(1-z)(1-tz-tz^2)].
T(k,n) = T(k-1,n-1)+T(k-1,n) with T(0,0)=1, T(k,0)=1 for k>0, T(0,n)=2 for n>0. - Frank M Jackson, Aug 30 2011
EXAMPLE
Triangle starts:
1,
1,
1,2,
1,2,2,
1,2,4,2,
1,2,4,6,2,
1,2,4,8,8,2,
1,2,4,8,14,10,2,
1,2,4,8,16,22,12,2,
1,2,4,8,16,30,32,14,2,
...
MAPLE
G := (1-t*z+t*z^2)/((1-z)*(1-t*z-t*z^2)): Gser := simplify(series(G, z = 0, 17)): for n from 0 to 15 do P[n] := sort(coeff(Gser, z, n)) end do: 1; for n to 13 do seq(coeff(P[n], t, k), k = 0 .. n-1) end do; # yields sequence in triangular form
CROSSREFS
Cf. A001595, A059214, A178523, A067331, A002940. See A059250 for another version.
Sequence in context: A140186 A078498 A350700 * A131240 A263666 A107027
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jun 15 2010
STATUS
approved