login
A059214
Square array T(k,n) = C(n-1,k) + Sum_{i=0..k} C(n,i) read by antidiagonals (k >= 1, n >= 1).
4
2, 2, 4, 2, 4, 6, 2, 4, 8, 8, 2, 4, 8, 14, 10, 2, 4, 8, 16, 22, 12, 2, 4, 8, 16, 30, 32, 14, 2, 4, 8, 16, 32, 52, 44, 16, 2, 4, 8, 16, 32, 62, 84, 58, 18, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 2, 4, 8, 16, 32, 64
OFFSET
1,1
COMMENTS
For k > 1, gives maximal number of regions into which k-space can be divided by n hyperspheres.
The maximum number of subsets of a set of n points in k-space that can be formed by intersecting it with a hyperplane. - Günter Rote, Dec 18 2018
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.
LINKS
Paolo Xausa, Table of n, a(n) for n = 1..11325 (antidiagonals 1..150 of the array, flattened).
E. F. Harding, The number of partitions of a set of n points in k dimensions induced by hyperplanes, Proc. Edinburgh Math. Soc., 15 (1967), 285-289.
FORMULA
T(k,n) = C(n-1, k) + Sum_{i=0..k} C(n, i).
EXAMPLE
Array begins
2 4 6 8 10 12 ...
2 4 8 14 22 32 ...
2 4 8 16 30 52 ...
MATHEMATICA
A059214[k_, n_]:=Binomial[n-1, k]+Sum[Binomial[n, i], {i, 0, k}];
Table[A059214[k-n+1, n], {k, 10}, {n, k}] (* Paolo Xausa, Dec 29 2023 *)
CROSSREFS
Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
Equals twice A216274.
Apart from left border, same as A059250. A178522 is probably the best version.
Sequence in context: A309894 A331118 A260723 * A091820 A171922 A306743
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 15 2001
STATUS
approved