OFFSET
1,3
COMMENTS
T(k,n) = maximal number of regions into which k-space can be divided by n hyperspheres (k >= 1, n >= 0).
For all fixed k, the sequences T(k,n) are complete. - Frank M Jackson, Jan 26 2012
T(k-1,n) is also the number of regions created by n generic hyperplanes through the origin in k-space (k >= 2). - Kent E. Morrison, Nov 11 2017
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.
LINKS
G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
K. E. Morrison, From bocce to positivity: some probabilistic linear algebra, arXiv:1405.2994 [math.PR], 2014; Math. Mag., 86 (2013) 110-119.
L. Schläfli, Theorie der vielfachen Kontinuität, 1901. (See p. 41)
J. G. Wendel, A problem in geometric probability, Math. Scand., 11 (1962) 109-111.
FORMULA
T(k,n) = 2 * Sum_{i=0..k-1} binomial(n-1, i), k >= 1, n >= 1. - Kent E. Morrison, Nov 11 2017
EXAMPLE
Array begins
1, 2, 4, 6, 8, 10, 12, ...
1, 2, 4, 8, 14, 22, ...
1, 2, 4, 8, 16, ...
MATHEMATICA
getvalue[n_, k_] := If[n==0, 1, Binomial[n-1, k]+Sum[Binomial[n, i], {i, 0, k}]]; lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@ IntegerPartitions[#1 + dim - 1, {dim}], 1] &, maxHeight], 1]; pairs=lexicographicLattice[{2, 13}]-1; Table[getvalue[First[pairs[[j]]], Last[pairs[[j]]]+1], {j, 1, Length[pairs]}] (* Frank M Jackson, Mar 16 2013 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 15 2001
EXTENSIONS
Corrected and edited by N. J. A. Sloane, Aug 31 2011, following a suggestion from Frank M Jackson
STATUS
approved