login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059250
Square array read by antidiagonals: T(k,n) = binomial(n-1, k) + Sum_{i=0..k} binomial(n, i), k >= 1, n >= 0.
7
1, 1, 2, 1, 2, 4, 1, 2, 4, 6, 1, 2, 4, 8, 8, 1, 2, 4, 8, 14, 10, 1, 2, 4, 8, 16, 22, 12, 1, 2, 4, 8, 16, 30, 32, 14, 1, 2, 4, 8, 16, 32, 52, 44, 16, 1, 2, 4, 8, 16, 32, 62, 84, 58, 18, 1, 2, 4, 8, 16, 32, 64, 114, 128, 74, 20, 1, 2, 4, 8, 16, 32, 64, 126, 198, 186, 92, 22, 1, 2, 4, 8, 16, 32, 64
OFFSET
1,3
COMMENTS
T(k,n) = maximal number of regions into which k-space can be divided by n hyperspheres (k >= 1, n >= 0).
For all fixed k, the sequences T(k,n) are complete. - Frank M Jackson, Jan 26 2012
T(k-1,n) is also the number of regions created by n generic hyperplanes through the origin in k-space (k >= 2). - Kent E. Morrison, Nov 11 2017
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 73, Problem 4.
LINKS
K. E. Morrison, From bocce to positivity: some probabilistic linear algebra, arXiv:1405.2994 [math.PR], 2014; Math. Mag., 86 (2013) 110-119.
L. Schläfli, Theorie der vielfachen Kontinuität, 1901. (See p. 41)
J. G. Wendel, A problem in geometric probability, Math. Scand., 11 (1962) 109-111.
FORMULA
T(k,n) = 2 * Sum_{i=0..k-1} binomial(n-1, i), k >= 1, n >= 1. - Kent E. Morrison, Nov 11 2017
EXAMPLE
Array begins
1, 2, 4, 6, 8, 10, 12, ...
1, 2, 4, 8, 14, 22, ...
1, 2, 4, 8, 16, ...
MATHEMATICA
getvalue[n_, k_] := If[n==0, 1, Binomial[n-1, k]+Sum[Binomial[n, i], {i, 0, k}]]; lexicographicLattice[{dim_, maxHeight_}] := Flatten[Array[Sort@Flatten[(Permutations[#1] &) /@ IntegerPartitions[#1 + dim - 1, {dim}], 1] &, maxHeight], 1]; pairs=lexicographicLattice[{2, 13}]-1; Table[getvalue[First[pairs[[j]]], Last[pairs[[j]]]+1], {j, 1, Length[pairs]}] (* Frank M Jackson, Mar 16 2013 *)
CROSSREFS
Cf. A014206 (dim 2), A046127 (dim 3), A059173 (dim 4), A059174 (dim 5).
Apart from border, same as A059214. If the k=0 row is included, same as A178522.
Sequence in context: A327844 A243851 A168266 * A303696 A131074 A059268
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 15 2001
EXTENSIONS
Corrected and edited by N. J. A. Sloane, Aug 31 2011, following a suggestion from Frank M Jackson
STATUS
approved