login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067331
Convolution of Fibonacci F(n+1), n >= 0, with F(n+3), n >= 0.
19
2, 5, 12, 25, 50, 96, 180, 331, 600, 1075, 1908, 3360, 5878, 10225, 17700, 30509, 52390, 89664, 153000, 260375, 442032, 748775, 1265832, 2136000, 3598250, 6052061, 10164540, 17048641, 28559450, 47786400, 79870428, 133359715, 222457608, 370747675, 617363100
OFFSET
0,1
COMMENTS
Third diagonal of A067330. Third column of A067418.
From Emeric Deutsch, Jun 15 2010: (Start)
a(n) is the external path length of the Fibonacci tree of order n+3. A Fibonacci tree of order n (n >= 2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The external path length of a tree is the sum of the levels of its external nodes (i.e., leaves).
a(n) = Sum_{k>=0} k*A178524(n+2,k).
(End)
a(n) equals the penultimate immanant of the (n+3) X (n+3) tridiagonal matrix with ones along the main diagonal, the superdiagonal, and the subdiagonal. - John M. Campbell, Jan 01 2016
a(n) is the sum of the eccentricities of the vertices of the Fibonacci cube G(n+1). Example: a(1)=5; indeed, the Fibonacci cube G(2) is the path graph P(3), the vertices of which have eccentricities 2, 1, 2. - Emeric Deutsch, May 28 2017
REFERENCES
D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
LINKS
Matthew Blair, Rigoberto Flórez, Antara Mukherjee, and José L. Ramírez, Matrices in the determinant Hosoya triangle, Fibonacci Quart. 58 (2020), no. 5, 34-54.
Matthew Blair, Rigoberto Flórez, and Antara Mukherjee, Geometric Patterns in The Determinant Hosoya Triangle, INTEGERS, A90, 2021.
J. Bodeen, S. Butler, T. Kim, X. Sun, and S. Wang, Tiling a strip with triangles, Electron. J. Combin. 21 (1) (2014), P1.7.
Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20(2) (1982), 168-178.
S. Klavzar and M. Mollard, Asymptotic properties of Fibonacci cubes and Lucas cubes, HAL Id: hal-00836788, 2013.
S. Klavzar and M. Mollard, Asymptotic properties of Fibonacci cubes and Lucas cubes, Ann. Comb. 18 (2014), 447-457.
FORMULA
a(n) = A067330(n+2, n) = A067418(n+2, 2) = Sum_{k=0..n} F(k+1)*F(n+3-k), n >= 0.
a(n) = ((7*n + 10)*F(n + 1) + 4*(n + 1)*F(n))/5, with F(n) = A000045(n) (Fibonacci).
G.f.: (2 + x)/(1 - x - x^2)^2.
a(n) = Sum_{i=0..floor((n+3)/2)} binomial(n+3-i, i)*(n + 2 - 2*i). - John M. Campbell, Jan 04 2016
E.g.f.: exp(x/2)*(50 + 55*x)*cosh(sqrt(5)*x/2) + sqrt(5)*(18 + 25*x)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 04 2023
EXAMPLE
From John M. Campbell, Jan 03 2016: (Start)
Letting n=2, the external path length of the Fibonacci tree T(5) of order n+3=5 illustrated below is 12 = a(2) = F(1)*F(5) + F(2)*F(4) + F(3)*F(3).
.
/ \
/\ /\
/\
(End)
MAPLE
f:= gfun:-rectoproc({a(n) = 2*a(n-1)+a(n-2) - 2*a(n-3)-a(n-4), a(0)=2, a(1)=5, a(2)=12, a(3)=25}, a(n), remember):
map(f, [$0..50]); # Robert Israel, Jan 06 2016
MATHEMATICA
LinearRecurrence[{2, 1, -2, -1}, {2, 5, 12, 25}, 70] (* Vincenzo Librandi, Jan 02 2016 *)
Table[SeriesCoefficient[(2 + x)/(1 - x - x^2)^2, {x, 0, n}], {n, 0, 34}] (* Michael De Vlieger, Jan 02 2016 *)
Print[Table[Sum[Binomial[n + 3 - i, i]*(n + 2 - 2*i), {i, 0, Floor[(n + 3)/2]}], {n, 0, 100}]] (* John M. Campbell, Jan 04 2016 *)
Module[{nn=40, fibs}, fibs=Fibonacci[Range[nn]]; Table[ListConvolve[Take[ fibs, n], Take[fibs, {2, n+2}]], {n, nn-2}]][[All, 2]] (* Harvey P. Dale, Aug 03 2019 *)
PROG
(Magma) [((7*n+10)*Fibonacci(n+1)+4*(n+1)*Fibonacci(n))/5: n in [0..40]]; // Vincenzo Librandi, Jan 02 2016
(PARI) Vec((2+x)/(1-x-x^2)^2 + O(x^100)) \\ Altug Alkan, Jan 04 2016
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
Wolfdieter Lang, Feb 15 2002
STATUS
approved