login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A067334
Convolution of Fibonacci F(n+1), n>=0, with F(n+6), n>=0.
0
8, 21, 50, 105, 210, 404, 758, 1395, 2530, 4535, 8052, 14184, 24820, 43185, 74770, 128901, 221382, 378940, 646690, 1100655, 1868738, 3165811, 5352360, 9032400, 15216800, 25595469, 42990578, 72110625
OFFSET
0,1
COMMENTS
Sixth diagonal of A067330. Sixth column of A067418.
FORMULA
a(n)= A067330(n+5, n) = A067418(n+5, 5) = sum(F(k+1)*F(n+6-k), k=0..n), n>=0.
a(n)= ((29*n+40)*F(n+1)+18*(n+1)*F(n))/5, with F(n) := A000045(n) (Fibonacci).
G.f.: (8+5*x)/(1-x-x^2)^2.
a(0)=8, a(1)=21, a(2)=50, a(3)=105, a(n)=2*a(n-1)+a(n-2)-2*a(n-3)- a(n-4) [From Harvey P. Dale, Apr 07 2012]
MATHEMATICA
CoefficientList[Series[(8+5x)/(1-x-x^2)^2, {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 1, -2, -1}, {8, 21, 50, 105}, 40] (* Harvey P. Dale, Apr 07 2012 *)
CROSSREFS
Sequence in context: A258448 A344599 A138179 * A066859 A227653 A296198
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Feb 15 2002
STATUS
approved