login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A296198
Harary index of the n X n black bishop graph.
0
0, 1, 8, 21, 55, 104, 197, 318, 514, 755, 1110, 1531, 2113, 2786, 3675, 4684, 5972, 7413, 9204, 11185, 13595, 16236, 19393, 22826, 26870, 31239, 36322, 41783, 48069, 54790, 62455, 70616, 79848, 89641, 100640, 112269, 125247, 138928, 154109, 170070
OFFSET
1,3
LINKS
Eric Weisstein's World of Mathematics, Black Bishop Graph
Eric Weisstein's World of Mathematics, Harary Index
FORMULA
a(n) = (-15 + 20*n - 30*n^2 + 16*n^3 + 6*n^4 - 3*(-1)^n*(2*n^2 + 4*n - 5))/96.
a(n) = 2*a(n-1) + 2*a(n-2) - 6*a(n-3) + 6*a(n-5) - 2*a(n-6) - 2*a(n-7) + a(n-8).
G.f.: x^2*(-1 - 6*x - 3*x^2 - 3*x^3 + x^5)/((-1 + x)^5*(1 + x)^3).
MATHEMATICA
Table[(-15 + 20 n - 30 n^2 + 16 n^3 + 6 n^4 - 3 (-1)^n (2 n^2 + 4 n - 5))/96, {n, 20}]
LinearRecurrence[{2, 2, -6, 0, 6, -2, -2, 1}, {0, 1, 8, 21, 55, 104, 197, 318}, 20]
CoefficientList[Series[x (-1 - 6 x - 3 x^2 - 3 x^3 + x^5)/((-1 + x)^5 (1 + x)^3), {x, 0, 20}], x]
PROG
(PARI) first(n) = Vec(x^2*(-1 - 6*x - 3*x^2 - 3*x^3 + x^5)/((-1 + x)^5*(1 + x)^3) + O(x^(n+1)), -n) \\ Iain Fox, Dec 07 2017
CROSSREFS
Sequence in context: A067334 A066859 A227653 * A301538 A192299 A080144
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Dec 07 2017
STATUS
approved