login
A296197
Harary index of the n X n bishop graph.
0
0, 2, 13, 42, 102, 208, 379, 636, 1004, 1510, 2185, 3062, 4178, 5572, 7287, 9368, 11864, 14826, 18309, 22370, 27070, 32472, 38643, 45652, 53572, 62478, 72449, 83566, 95914, 109580, 124655, 141232, 159408, 179282, 200957, 224538, 250134, 277856, 307819, 340140
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, Bishop Graph
Eric Weisstein's World of Mathematics, Harary Index
FORMULA
a(n) = (3 + 8*n - 36*n^2 + 16*n^3 + 6*n^4 - 3 (-1)^n)/48.
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6).
G.f.: x^2*(-2 - 5*x + x^3)/((-1 + x)^5 (1 + x)).
MATHEMATICA
Table[(3 + 8 n - 36 n^2 + 16 n^3 + 6 n^4 - 3 (-1)^n)/48, {n, 10}]
LinearRecurrence[{4, -5, 0, 5, -4, 1}, {0, 2, 13, 42, 102, 208}, 40]
CoefficientList[Series[x (-2 - 5 x + x^3)/((-1 + x)^5 (1 + x)), {x, 0, 20}], x]
PROG
(PARI) first(n) = Vec(x^2*(-2 - 5*x + x^3)/((-1 + x)^5*(1 + x)) + O(x^(n+1)), -n) \\ Iain Fox, Dec 07 2017
CROSSREFS
Sequence in context: A219054 A154354 A138089 * A026594 A240173 A235469
KEYWORD
nonn,easy
AUTHOR
Eric W. Weisstein, Dec 07 2017
STATUS
approved