OFFSET
0,2
COMMENTS
From Andrew Woods, Jun 03 2013: (Start)
a(n) is the number of ways to tile a 2 X n square grid with 1 X 1, 1 X 2, 2 X 1, and 2 X 2 tiles. Solutions for a(2)=8:
. _ _ _ _ ___ ___ ___ _ _ _ _ _ _
| | | | |_| | | |___| |___| |_| | |_|_| |_|_|
|_|_| |_|_| |___| |___| |_|_| |_|_| |___| |_|_|
(End)
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 478
Index entries for linear recurrences with constant coefficients, signature (3,2,-2).
FORMULA
G.f.: (1-x)/(1 - 3*x - 2*x^2 + 2*x^3).
a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3), with a(0)=1, a(1)=2, a(2)=8.
a(n) = Sum_{alpha = RootOf(1 -3*x -2*x^2 +2*x^3)} (1/98)*(13 + 25*alpha - 16*alpha^2)*alpha^(-n-1).
Equals triangle A059260 * the Pell sequence [1, 2, 5, 12, ...] as a vector. - Gary W. Adamson, Mar 06 2012
MAPLE
spec := [S, {S=Sequence(Prod(Union(Z, Z), Union(Z, Sequence(Z))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x)/(1-3x-2x^2+2x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 2, -2}, {1, 2, 8}, 30] (* Harvey P. Dale, Jan 23 2013 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-3*x-2*x^2+2*x^3)) \\ G. C. Greubel, May 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -3*x-2*x^2+2*x^3) )); // G. C. Greubel, May 09 2019
(Sage) ((1-x)/(1-3*x-2*x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
(GAP) a:=[1, 2, 8];; for n in [4..30] do a[n]:=3*a[n-1]+2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, May 09 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved