login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052543
Expansion of (1-x)/(1 - 3*x - 2*x^2 + 2*x^3).
4
1, 2, 8, 26, 90, 306, 1046, 3570, 12190, 41618, 142094, 485138, 1656366, 5655186, 19308014, 65921682, 225070702, 768439442, 2623616366, 8957586578, 30583113582, 104417281170, 356502897518, 1217177027730, 4155702315886
OFFSET
0,2
COMMENTS
From Andrew Woods, Jun 03 2013: (Start)
a(n) is the number of ways to tile a 2 X n square grid with 1 X 1, 1 X 2, 2 X 1, and 2 X 2 tiles. Solutions for a(2)=8:
. _ _ _ _ ___ ___ ___ _ _ _ _ _ _
| | | | |_| | | |___| |___| |_| | |_|_| |_|_|
|_|_| |_|_| |___| |___| |_|_| |_|_| |___| |_|_|
(End)
FORMULA
G.f.: (1-x)/(1 - 3*x - 2*x^2 + 2*x^3).
a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3), with a(0)=1, a(1)=2, a(2)=8.
a(n) = Sum_{alpha = RootOf(1 -3*x -2*x^2 +2*x^3)} (1/98)*(13 + 25*alpha - 16*alpha^2)*alpha^(-n-1).
Equals triangle A059260 * the Pell sequence [1, 2, 5, 12, ...] as a vector. - Gary W. Adamson, Mar 06 2012
a(n) = A214997(n) - A214996(n). - Clark Kimberling, Nov 28 2012
MAPLE
spec := [S, {S=Sequence(Prod(Union(Z, Z), Union(Z, Sequence(Z))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
CoefficientList[Series[(1-x)/(1-3x-2x^2+2x^3), {x, 0, 30}], x] (* or *) LinearRecurrence[{3, 2, -2}, {1, 2, 8}, 30] (* Harvey P. Dale, Jan 23 2013 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-x)/(1-3*x-2*x^2+2*x^3)) \\ G. C. Greubel, May 09 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-x)/(1 -3*x-2*x^2+2*x^3) )); // G. C. Greubel, May 09 2019
(Sage) ((1-x)/(1-3*x-2*x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 09 2019
(GAP) a:=[1, 2, 8];; for n in [4..30] do a[n]:=3*a[n-1]+2*a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, May 09 2019
CROSSREFS
Sequence in context: A298189 A053956 A320802 * A026638 A307401 A067855
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved