login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052546
Expansion of (1-x)/(1-x-x^2-2*x^3+2*x^4).
2
1, 0, 1, 3, 2, 7, 13, 18, 41, 71, 122, 239, 421, 762, 1417, 2543, 4642, 8495, 15389, 28082, 51177, 93047, 169610, 308847, 562197, 1024170, 1864841, 3395711, 6184498, 11261551, 20507789, 37346914, 68008809, 123848199, 225535258
OFFSET
0,4
FORMULA
G.f.: (1-x)/(1-x-2*x^3+2*x^4-x^2).
a(n) = a(n-1) + a(n-2) + 2*a(n-3) - 2*a(n-4), with a(0)=1, a(1)=0, a(2)=1, a(3)=3.
a(n) = Sum_{alpha = RootOf(1-x-2*x^3+2*x^4-x^2)} (-1/353 * (-18-106*alpha+33*alpha^2+28*alpha^3) * alpha^(-1-n)).
MAPLE
spec := [S, {S=Sequence(Prod(Z, Z, Union(Z, Z, Sequence(Z))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..40);
MATHEMATICA
CoefficientList[Series[(1-x)/(1-x-x^2-2x^3+2x^4), {x, 0, 40}], x] (* or *) LinearRecurrence[{1, 1, 2, -2}, {1, 0, 1, 3}, 40] (* Harvey P. Dale, Jul 02 2017 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-x)/(1-x-2*x^3+2*x^4-x^2)) \\ G. C. Greubel, May 08 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1-x)/(1-x-2*x^3+2*x^4-x^2) )); // G. C. Greubel, May 08 2019
(Sage) ((1-x)/(1-x-2*x^3+2*x^4-x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 08 2019
(GAP) a:=[1, 0, 1, 3];; for n in [5..40] do a[n]:=a[n-1]+a[n-2]+2*a[n-3] -2*a[n-4]; od; a; # G. C. Greubel, May 08 2019
CROSSREFS
Sequence in context: A212189 A114647 A234750 * A260016 A320769 A358283
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved