|
|
A052548
|
|
a(n) = 2^n + 2.
|
|
65
|
|
|
3, 4, 6, 10, 18, 34, 66, 130, 258, 514, 1026, 2050, 4098, 8194, 16386, 32770, 65538, 131074, 262146, 524290, 1048578, 2097154, 4194306, 8388610, 16777218, 33554434, 67108866, 134217730, 268435458, 536870914, 1073741826, 2147483650
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The most "compact" sequence that satisfies Bertrand's Postulate. Begin with a(1) = 3 = n, then 2n - 2 = 4 = n_1, 2n_1 - 2 = 6 = n_2, 2n_2 - 2 = 10, etc. = a(n), hence there is guaranteed to be at least one prime between successive members of the sequence. - Andrew S. Plewe, Dec 11 2007
Number of 2-sided prudent polygons of area n, for n>0, see Beaton, p. 5. - Jonathan Vos Post, Nov 30 2010
|
|
LINKS
|
Popular Computing (Calabasas, CA), Sieves: Problem 43, Vol. 2 (No. 13, Apr 1974), pp. 6-7. This is Sieve #6 with K=2. [Annotated and scanned copy]
|
|
FORMULA
|
G.f.: (3-5*x)/((1-2*x)*(1-x)) = (3-5*x)/(1 - 3*x + 2*x^2) = 2/(1-x) + 1/(1-2*x).
a(0)=3, a(1)=4, a(n) = 3*a(n-1) - 2*a(n-2).
|
|
MAPLE
|
spec := [S, {S=Union(Sequence(Union(Z, Z)), Sequence(Z), Sequence(Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
|
|
MATHEMATICA
|
|
|
PROG
|
(Haskell)
a052548 = (+ 2) . a000079
a052548_list = iterate ((subtract 2) . (* 2)) 3
|
|
CROSSREFS
|
Apart from initial term, same as A056469.
Cf. A003462, A007051, A034472, A024023, A067771, A029858, A134931, A115099, A100774, A079004, A058481, A100585, A100586, A058896, A000918, A173786.
|
|
KEYWORD
|
easy,nonn
|
|
AUTHOR
|
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|