login
A052550
Expansion of (1-2*x)/(1 - 3*x - x^2 + 2*x^3).
7
1, 1, 4, 11, 35, 108, 337, 1049, 3268, 10179, 31707, 98764, 307641, 958273, 2984932, 9297787, 28961747, 90213164, 281005665, 875306665, 2726499332, 8492793331, 26454265995, 82402592652, 256676457289, 799523432529, 2490441569572
OFFSET
0,3
FORMULA
G.f.: (1 - 2*x)/(1 - 3*x - x^2 + 2*x^3).
a(n) = 3*a(n-1) + a(n-2) - 2*a(n-3), with a(0)=1, a(1)=1, a(2)=4.
a(n) = Sum((-1/229) * (-5 - 74*alpha + 16*alpha^2) * alpha^(-1-n), alpha = RootOf(1 - 3*z - z^2 + 2*z^3)).
MAPLE
spec := [S, {S=Sequence(Prod(Z, Union(Z, Sequence(Union(Z, Z)))))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
LinearRecurrence[{3, 1, -2}, {1, 1, 4}, 30] (* G. C. Greubel, May 07 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec((1-2*x)/(1-3*x-x^2+2*x^3)) \\ G. C. Greubel, May 07 2019
(Magma) I:=[1, 1, 4]; [n le 3 select I[n] else 3*Self(n-1) +Self(n-2) -2*Self(n-3): n in [1..30]]; // G. C. Greubel, May 07 2019
(Sage) ((1-2*x)/(1-3*x-x^2+2*x^3)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, May 07 2019
(GAP) a:=[1, 1, 4];; for n in [4..30] do a[n]:=3*a[n-1]+a[n-2]-2*a[n-3]; od; a; # G. C. Greubel, May 07 2019
CROSSREFS
Sequence in context: A000626 A036364 A295247 * A197626 A349185 A358826
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved