login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A052549
a(n) = 5*2^(n-1) - 1, n>0, with a(0)=1.
9
1, 4, 9, 19, 39, 79, 159, 319, 639, 1279, 2559, 5119, 10239, 20479, 40959, 81919, 163839, 327679, 655359, 1310719, 2621439, 5242879, 10485759, 20971519, 41943039, 83886079, 167772159, 335544319, 671088639, 1342177279, 2684354559
OFFSET
0,2
COMMENTS
A153894 is a better version of this sequence. - N. J. A. Sloane, Feb 07 2009
Equals binomial transform of [1, 3, 2, 3, 2, 3, 2, ...]. - Gary W. Adamson, May 11 2008
LINKS
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
FORMULA
G.f.: (1 + x - x^2)/((1-2*x)*(1-x)).
a(n) = 2*a(n-1) + 1, for n>1, with a(0)=1 and a(1)=4.
E.g.f.: (5*exp(2*x) - 2*exp(x) - 1)/2. - G. C. Greubel, May 07 2019
a(n) = 1 + A000225(n-1) + A000225(n+1) for n > 0. - Gennady Eremin, Sep 08 2023
MAPLE
spec := [S, {S=Prod(Sequence(Union(Z, Z)), Union(Z, Sequence(Z)))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..20);
MATHEMATICA
{1}~Join~Array[5*2^(# -1)-1 &, 30] (* Michael De Vlieger, Jul 18 2018 *)
LinearRecurrence[{3, -2}, {1, 4, 9}, 30] (* G. C. Greubel, May 07 2019 *)
PROG
(PARI) vector(30, n, n--; if(n==0, 1, 5*2^(n-1) -1)) \\ G. C. Greubel, May 07 2019
(Magma) [n eq 0 select 1 else 5*2^(n-1) -1: n in [0..30]]; // G. C. Greubel, May 07 2019
(Sage) [1]+[5*2^(n-1) -1 for n in (1..30)] # G. C. Greubel, May 07 2019
(GAP) Concatenation([1], List([1..30], n-> 5*2^(n-1) -1)) # G. C. Greubel, May 07 2019
(Python)
a052549 = [1] + [(5<<(n-1))-1 for n in range(1, 30)]
print(a052549) # Gennady Eremin, Sep 10 2023
CROSSREFS
Sequence in context: A101353 A008135 A009885 * A153894 A372448 A301137
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
More terms from James A. Sellers, Jun 06 2000
STATUS
approved