login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A101353
a(n) = Sum_{k=0..n} (2^k + Fibonacci(k)).
1
1, 4, 9, 19, 38, 75, 147, 288, 565, 1111, 2190, 4327, 8567, 16992, 33753, 67131, 133654, 266323, 531051, 1059520, 2114861, 4222959, 8434974, 16852239, 33675823, 67305280, 134535537, 268949683, 537702950, 1075088091, 2149661955, 4298491872, 8595637477
OFFSET
0,2
FORMULA
Fibonacci(n+2) + 2^(n+1) + 2. - Ralf Stephan, May 16 2007
a(n)= 4*a(n-1) -4*a(n-2) -a(n-3) +2*a(n-4). G.f.: (1-3*x^2)/((1-x) * (2*x-1) * (x^2+x-1)). - R. J. Mathar, Feb 06 2010
a(n) = (-2+2^(1+n)+(2^(-1-n)*((1-sqrt(5))^n*(-3+sqrt(5))+(1+sqrt(5))^n*(3+sqrt(5))))/sqrt(5)). - Colin Barker, Nov 03 2016
MAPLE
seq(sum(2^x+fibonacci(x), x=0..a), a=0..30);
PROG
(PARI) Vec((1-3*x^2)/((1-x)*(2*x-1)*(x^2+x-1)) + O(x^40)) \\ Colin Barker, Nov 03 2016
CROSSREFS
Cf. A117591 (first differences). - R. J. Mathar, Feb 06 2010
Sequence in context: A301089 A177144 A266370 * A008135 A009885 A052549
KEYWORD
nonn,easy
AUTHOR
Jorge Coveiro, Dec 25 2004
STATUS
approved