login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A266370
G.f. = b(2)^2*b(4)/(2*x^5+x^4-2*x^3-x^2-x+1), where b(k) = (1-x^k)/(1-x).
2
1, 4, 9, 19, 38, 70, 129, 238, 431, 781, 1419, 2566, 4640, 8401, 15192, 27469, 49691, 89863, 162498, 293890, 531485, 961126, 1738167, 3143377, 5684531, 10280146, 18591012, 33620509, 60800528, 109953853, 198844095, 359596471, 650306726, 1176036478, 2126784345
OFFSET
0,2
COMMENTS
This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_9 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).
LINKS
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010), 169-215.
MAPLE
gf:= b(2)^2*b(4)/(2*x^5+x^4-2*x^3-x^2-x+1):
b:= k->(1-x^k)/(1-x):
a:= n-> coeff(series(gf, x, n+1), x, n):
seq(a(n), n=0..40);
MATHEMATICA
b[k_] := (1 - x^k)/(1 - x); CoefficientList[Series[b[2]^2 b[4]/(2 x^5 + x^4 - 2 x^3 - x^2 - x + 1), {x, 0, 40}], x] (* Bruno Berselli, Dec 28 2015 *)
PROG
(Magma) /* By definition: */ m:=40; R<x>:=PowerSeriesRing(Integers(), m); b:=func<k|(1-x^k)/(1-x)>; Coefficients(R!(b(2)^2*b(4)/(2*x^5+x^4-2*x^3-x^2-x+1))); // Bruno Berselli, Dec 29 2015
CROSSREFS
Cf. similar sequences listed in A265055.
Sequence in context: A301088 A301089 A177144 * A101353 A008135 A009885
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 28 2015
STATUS
approved