login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265055
Expansion of b(2)*b(4)*b(6)/(x^8-x^4-x+1), where b(k) = (1-x^k)/(1-x).
22
1, 4, 9, 16, 25, 37, 53, 74, 101, 135, 179, 237, 313, 411, 537, 700, 912, 1188, 1546, 2009, 2608, 3385, 4394, 5703, 7399, 9596, 12444, 16138, 20929, 27140, 35190, 45625, 59155, 76699, 99445, 128932, 167158, 216717, 280972, 364279, 472282, 612300, 793827, 1029174, 1334298
OFFSET
0,2
COMMENTS
This is the Poincaré series [or Poincare series] for the quasi-Lannér diagram QL4_1 - see Tables 7.6, 7.7 and 7.8 in Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2009), or equivalently Tables 5 and 6 in the shorter version, Maxim Chapovalov, Dimitry Leites and Rafael Stekolshchik (2010).
LINKS
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010): 169-215.
FORMULA
G.f.: (1 + x^2)*(1 - x + x^2)*(1 + x + x^2)*(1 + x)^3/((1 - x)*(1 - x^4 - x^5 - x^6 - x^7)). [Bruno Berselli, Dec 28 2015]
MATHEMATICA
Join[{1, 4}, LinearRecurrence[{1, 0, 0, 1, 0, 0, 0, -1}, {9, 16, 25, 37, 53, 74, 101, 135}, 50]] (* Jean-François Alcover, Jan 08 2019 *)
PROG
(Magma) /* By definition: */ m:=50; R<x>:=PowerSeriesRing(Integers(), m); b:=func<k|(1-x^k)/(1-x)>; Coefficients(R!(b(2)*b(4)*b(6)/(x^8-x^4-x+1))); // Bruno Berselli, Dec 28 2015
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 27 2015
STATUS
approved