login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A265057
Coordination sequence for (2,3,7) tiling of hyperbolic plane.
27
1, 3, 5, 7, 9, 12, 16, 20, 24, 28, 33, 40, 48, 57, 67, 78, 92, 109, 129, 152, 178, 209, 246, 290, 342, 402, 472, 555, 653, 769, 905, 1064, 1251, 1471, 1731, 2037, 2396, 2818, 3314, 3898, 4586, 5395, 6346, 7464, 8779, 10327, 12148, 14290, 16809, 19771, 23256, 27356, 32179, 37852, 44524, 52372
OFFSET
0,2
LINKS
J. W. Cannon, P. Wagreich, Growth functions of surface groups, Mathematische Annalen, 1992, Volume 293, pp. 239-257. See Prop. 3.1.
Index entries for linear recurrences with constant coefficients, signature (-1, 0, 1, 1, 1, 1, 1, 0, -1, -1).
FORMULA
G.f.: (x^6+x^5+x^4+x^3+x^2+x+1)*(x^2+x+1)*(x+1)^2/(x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1).
MATHEMATICA
CoefficientList[Series[(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1) (x^2 + x + 1) (x + 1)^2/(x^10 + x^9 - x^7 - x^6 - x^5 - x^4 - x^3 + x + 1), {x, 0, 60}], x] (* Vincenzo Librandi, Dec 30 2015 *)
PROG
(PARI) x='x+O('x^50); Vec((x^6+x^5+x^4+x^3+x^2+x+1)*(x^2+x+1)*(x+1)^2/(x^10+x^9-x^7-x^6-x^5-x^4-x^3+x+1)) \\ G. C. Greubel, Aug 06 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 29 2015
STATUS
approved