This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A265054 Poincare series for hyperbolic reflection group with Coxeter diagram shown in Comments. 9
 1, 4, 10, 22, 46, 94, 188, 372, 734, 1446, 2844, 5588, 10976, 21556, 42330, 83120, 163214, 320484, 629292, 1235652, 2426272, 4764118, 9354602, 18368260, 36067056, 70819582, 139058010, 273047782, 536143806, 1052746804, 2067124190, 4058907988, 7969881118, 15649284294, 30728199738, 60336449982 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The Coxeter diagram is: ..5 o---o |...| |...| |...| o---o ..5 (4 nodes, square, two opposite edges carry label 5) LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The PoincarĂ© series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009. Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The PoincarĂ© series [or Poincare series] of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010): 169-215. R. L. Worthington, The growth series of compact hyperbolic Coxeter groups, with 4 and 5 generators, Canad. Math. Bull. 41(2) (1998) 231-239 Index entries for linear recurrences with constant coefficients, signature (3,-2,-1,3,-3,1,2,-3,1). FORMULA G.f.: -b(2)*(x^3+1)*(x^5+1)/t1 where b(k) = (1-x^k)/(1-x) and t1 = (x-1)*(x^2+1)*(x^6-2*x^5-x^4+3*x^3-x^2-2*x+1). G.f.: (1+x)^3*(1-x+x^2)*(1-x+x^2-x^3+x^4) / ((1-x)*(1+x^2)*(1-2*x-x^2+3*x^3-x^4-2*x^5+x^6)). - Colin Barker, Jan 01 2016 PROG (PARI) Vec((1+x)^3*(1-x+x^2)*(1-x+x^2-x^3+x^4)/((1-x)*(1+x^2)*(1-2*x-x^2+3*x^3-x^4-2*x^5+x^6)) + O(x^40)) \\ Colin Barker, Jan 01 2016 CROSSREFS Poincare series in this family: A265044 and A265047 - A265054. Sequence in context: A174622 A038621 A078407 * A099018 A033484 A296953 Adjacent sequences:  A265051 A265052 A265053 * A265055 A265056 A265057 KEYWORD nonn,easy AUTHOR N. J. A. Sloane, Dec 27 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 11:15 EDT 2019. Contains 328294 sequences. (Running on oeis4.)