login
A265051
Poincaré series for hyperbolic reflection group with Coxeter diagram shown in Comments.
1
1, 4, 10, 22, 44, 84, 156, 284, 512, 918, 1642, 2932, 5230, 9324, 16618, 29614, 52768, 94020, 167516, 298460, 531756, 947406, 1687946, 3007324, 5357986, 9546028, 17007626, 30301534, 53986540, 96184780, 171367004, 305314932, 543962400, 969147134, 1726674794, 3076319100, 5480904238
OFFSET
0,2
COMMENTS
The Coxeter diagram is:
..4
o---o
|...|
|...|
|...|
o---o
..4
(4 nodes, square, two opposite edges carry label 4)
LINKS
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010): 169-215.
R. L. Worthington, The growth series of compact hyperbolic Coxeter groups, with 4 and 5 generators, Canad. Math. Bull. 41(2) (1998) 231-239
FORMULA
G.f.: -b(2)*b(4)*(x^3+1)/t1 where b(k) = (1-x^k)/(1-x) and t1 = (x-1)*(x^6-x^5-x^4-x^2-x+1).
G.f.: (1+x)^3*(1-x+x^2)*(1+x^2) / ((1-x)*(1-x-x^2-x^4-x^5+x^6)). - Colin Barker, Jan 01 2016
MATHEMATICA
Join[{1}, LinearRecurrence[{2, 0, -1, 1, 0, -2, 1}, {4, 10, 22, 44, 84, 156, 284}, 60]] (* Vincenzo Librandi, Jan 01 2016 *)
PROG
(PARI) Vec((1+x)^3*(1-x+x^2)*(1+x^2)/((1-x)*(1-x-x^2-x^4-x^5+x^6)) + O(x^50)) \\ Colin Barker, Jan 01 2016
(Magma) I:=[1, 4, 10, 22, 44, 84, 156, 284]; [n le 8 select I[n] else 2*Self(n-1)-Self(n-3)+Self(n-4)-2*Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Jan 01 2016
CROSSREFS
Poincaré series in this family: A265044 and A265047 - A265054.
Sequence in context: A292445 A023628 A294683 * A266375 A004798 A265052
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 27 2015
STATUS
approved