OFFSET
0,2
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series of the hyperbolic Coxeter groups with finite volume of fundamental domains, arXiv:0906.1596 [math.RT], 2009.
Maxim Chapovalov, Dimitry Leites, and Rafael Stekolshchik, The Poincaré series of the hyperbolic Coxeter groups with finite volume of fundamental domains, Journal of Nonlinear Mathematical Physics 17.supp01 (2010): 169-215.
R. L. Worthington, The growth series of compact hyperbolic Coxeter groups, with 4 and 5 generators, Canad. Math. Bull. 41(2) (1998) 231-239
Index entries for linear recurrences with constant coefficients, signature (2,-1,0,1,-1,1,-1,1,-1,0,1,-2,1).
FORMULA
G.f.: -b(2)*b(5)*(x^3+1)*(x^5+1)/t1 where b(k) = (1-x^k)/(1-x) and t1=(x-1)*(x^12-x^11-x^8-x^6-x^4-x+1).
G.f.: (1+x)^3*(1-x+x^2)*(1-x+x^2-x^3+x^4)*(1+x+x^2+x^3+x^4) / ((1-x)*(1-x-x^4-x^6-x^8-x^11+x^12)). - Colin Barker, Jan 01 2016
MATHEMATICA
LinearRecurrence[{2, -1, 0, 1, -1, 1, -1, 1, -1, 0, 1, -2, 1}, {1, 4, 9, 17, 30, 50, 80, 125, 193, 296, 450, 680, 1025, 1541}, 50] (* Harvey P. Dale, Nov 25 2017 *)
PROG
(PARI) Vec((1+x)^3*(1-x+x^2)*(1-x+x^2-x^3+x^4)*(1+x+x^2+x^3+x^4)/((1-x)*(1-x-x^4-x^6-x^8-x^11+x^12)) + O(x^50)) \\ Colin Barker, Jan 01 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 27 2015
STATUS
approved