

A265045


Coordination sequence for a 6.6.6 point in the 3transitive tiling {4.6.6, 6.6.6, 6.6.6.6} of the plane by squares and dominoes (hexagons).


3



1, 3, 7, 11, 14, 18, 23, 28, 32, 36, 40, 44, 48, 52, 56, 60, 64, 68, 72, 76, 80, 84, 88, 92, 96, 100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140, 144, 148, 152, 156, 160, 164, 168, 172, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

This tiling is 3transitive but not 3uniform since the polygons are not regular. It is a common floortiling.
The coordination sequences with respect to the points of types 4.6.6 (labeled "C" in the illustration), 6.6.6 ("B"), 6.6.6.6 ("A") are A265046, A265045, and A008574, respectively. The present sequence is for a "B" point.


LINKS

Colin Barker, Table of n, a(n) for n = 0..1000
N. J. A. Sloane, A portion of the 3transitive tiling {4.6.6, 6.6.6, 6.6.6.6}
N. J. A. Sloane, A portion of the 3transitive tiling {4.6.6, 6.6.6, 6.6.6.6} showing the three types of point
N. J. A. Sloane, Handdrawn illustration showing a(0) to a(10)
Index entries for linear recurrences with constant coefficients, signature (2,1).


FORMULA

For n >= 7 all three sequences equal 4n. (For n >= 7 the nth shell contains n1 points in the interior of each quadrant plus 4 points on the axes.)
From Colin Barker, Jan 01 2016: (Start)
a(n) = 2*a(n1)a(n2) for n>8.
a(n) = 4*n for n>6.
G.f.: (1+x)*(1+2*x^22*x^3+x^4+x^6x^7) / (1x)^2.
(End)


MATHEMATICA

LinearRecurrence[{2, 1}, {1, 3, 7, 11, 14, 18, 23, 28, 32}, 60] (* Harvey P. Dale, Sep 23 2017 *)


PROG

(PARI) Vec((1+x)*(1+2*x^22*x^3+x^4+x^6x^7)/(1x)^2 + O(x^100)) \\ Colin Barker, Jan 01 2016


CROSSREFS

Cf. A008574, A265046.
Sequence in context: A246170 A190694 A310206 * A310207 A189385 A310208
Adjacent sequences: A265042 A265043 A265044 * A265046 A265047 A265048


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane and Susanna Cuyler, Dec 27 2015


STATUS

approved



