OFFSET
0,2
COMMENTS
The group is presented by L_2 = <a, t | 1 = a^2 = [a, t^(-k) a t^k], for all k>.
LINKS
Walter Parry, Growth series of some wreath products, Trans. Amer. Math. Soc. 331 (1992), 751-759.
Wikipedia, Lamplighter group
Index entries for linear recurrences with constant coefficients, signature (1, 3, 0, -5, -3, 2, 3, 1).
FORMULA
G.f.: (1-x)(1+x)^3(1+x+x^2) / ((1-x-x^2)(1-x^2-x^3)^2).
EXAMPLE
a(2)=10, since the elements of length up to 2 are 1, a, t, t^-1, at, at^-1, ta, t^2, t^-1a, t^-2.
MATHEMATICA
CoefficientList[ Series[((x^2 + x + 1) (x - 1) (x + 1)^3)/((x^3 + x^2 - 1)^2 (x^2 + x - 1)), {x, 0, 36}], x] (* or *)
LinearRecurrence[{1, 3, 0, -5, -3, 2, 3, 1}, {1, 4, 10, 22, 44, 84, 155, 278}, 37] (* Robert G. Wilson v, Aug 08 2018 *)
PROG
(PARI) Vec((1-x)*(1+x)^3*(1+x+x^2)/((1-x-x^2)*(1-x^2-x^3)^2) + O(x^40)) \\ Michel Marcus, Nov 07 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zoran Sunic, Nov 06 2017
EXTENSIONS
More terms from Michel Marcus, Nov 07 2017
STATUS
approved