login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294683
Growth of the Lamplighter group: number of elements in the Lamplighter group L_2 = Z/2Z wr Z of length up to n with respect to the standard generating set {a,t}.
1
1, 4, 10, 22, 44, 84, 155, 278, 490, 850, 1457, 2474, 4167, 6974, 11609, 19238, 31762, 52274, 85806, 140534, 229735, 374958, 611158, 995016, 1618409, 2630222, 4271663, 6933430, 11248251, 18240668, 29569464, 47920016, 77639264, 125763290, 203680213, 329821130, 534014584
OFFSET
0,2
COMMENTS
The group is presented by L_2 = <a, t | 1 = a^2 = [a, t^(-k) a t^k], for all k>.
LINKS
Walter Parry, Growth series of some wreath products, Trans. Amer. Math. Soc. 331 (1992), 751-759.
FORMULA
G.f.: (1-x)(1+x)^3(1+x+x^2) / ((1-x-x^2)(1-x^2-x^3)^2).
EXAMPLE
a(2)=10, since the elements of length up to 2 are 1, a, t, t^-1, at, at^-1, ta, t^2, t^-1a, t^-2.
MATHEMATICA
CoefficientList[ Series[((x^2 + x + 1) (x - 1) (x + 1)^3)/((x^3 + x^2 - 1)^2 (x^2 + x - 1)), {x, 0, 36}], x] (* or *)
LinearRecurrence[{1, 3, 0, -5, -3, 2, 3, 1}, {1, 4, 10, 22, 44, 84, 155, 278}, 37] (* Robert G. Wilson v, Aug 08 2018 *)
PROG
(PARI) Vec((1-x)*(1+x)^3*(1+x+x^2)/((1-x-x^2)*(1-x^2-x^3)^2) + O(x^40)) \\ Michel Marcus, Nov 07 2017
CROSSREFS
Partial sums of A288348.
Sequence in context: A052821 A292445 A023628 * A265051 A266375 A004798
KEYWORD
nonn,easy
AUTHOR
Zoran Sunic, Nov 06 2017
EXTENSIONS
More terms from Michel Marcus, Nov 07 2017
STATUS
approved