login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A294686
Triangle read by rows: T(n,k) is the number of non-isomorphic colorings of a toroidal n X k grid using exactly four colors under translational symmetry, 1 <= k <= n.
9
0, 0, 6, 0, 260, 20720, 6, 5112, 1223136, 257706024, 48, 81876, 67769552, 54278580036, 44900438149488, 260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616, 1200, 17815020, 207438938000, 2570217454576416, 33725471278376393424, 460532748521625850986660, 6467585568566200114362823920, 5106, 257706012, 11681057249536, 576229125971686224
OFFSET
1,3
COMMENTS
Colors are not being permuted, i.e., Power Group Enumeration does not apply here.
REFERENCES
F. Harary and E. Palmer, Graphical Enumeration, Academic Press, 1973.
LINKS
FORMULA
T(n,k) = (Q!/(n*k))*(Sum_{d|n} Sum_{f|k} phi(d) phi(f) S(gcd(d,f)*(n/d)*(k/f), Q)) with Q=4 and S(n,k) Stirling numbers of the second kind.
T(n,k) = A184277(n,k) - 4*A184284(n,k) + 6*A184271(n,k) - 4. - Andrew Howroyd, Oct 05 2024
EXAMPLE
Triangle begins:
0;
0, 6;
0, 260, 20720;
6, 5112, 1223136, 257706024;
48, 81876, 67769552, 54278580036, 44900438149488;
260, 1223396, 3731753700, 11681058472672, 38403264917970196, 131160169581733489616;
...
PROG
(PARI) T(n, m)=my(k=4); k!*sumdiv(n, d, sumdiv(m, e, eulerphi(d) * eulerphi(e) * stirling(n*m/lcm(d, e), k, 2) ))/(n*m) \\ Andrew Howroyd, Oct 05 2024
CROSSREFS
Main diagonal is A376824.
Sequence in context: A362794 A336303 A111372 * A179936 A219952 A156444
KEYWORD
nonn,tabl,nice
AUTHOR
Marko Riedel, Nov 06 2017
STATUS
approved