login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056284 Number of n-bead necklaces with exactly four different colored beads. 7
0, 0, 0, 6, 48, 260, 1200, 5106, 20720, 81876, 318000, 1223136, 4675440, 17815020, 67769552, 257700906, 980240880, 3731753180, 14222737200, 54278580036, 207438938000, 793940475900, 3043140078000, 11681057249536, 44900438149296, 172824331826580, 666070256489680 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Turning over the necklace is not allowed.

REFERENCES

M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = A001868(n) - 4*A001867(n) + 6*A000031(n) - 4.

From Robert A. Russell, Sep 26 2018: (Start)

a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=4 is the number of colors and S2 is the Stirling subset number A008277.

G.f.: -Sum_{d>0} (phi(d)/d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=4 is the number of colors. (End)

EXAMPLE

For n=4, the six necklaces are ABCD, ABDC, ACBD, ACDB, ADBC and ADCB.

MATHEMATICA

k=4; Table[k!DivisorSum[n, EulerPhi[#]StirlingS2[n/#, k]&]/n, {n, 1, 30}] (* Robert A. Russell, Sep 26 2018 *)

PROG

(PARI) a(n) = my(k=4); (k!/n)*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)); \\ Michel Marcus, Sep 27 2018

CROSSREFS

Cf. A001868.

Column k=4 of A087854.

Sequence in context: A262354 A052771 A056289 * A293967 A246587 A340309

Adjacent sequences:  A056281 A056282 A056283 * A056285 A056286 A056287

KEYWORD

nonn

AUTHOR

Marks R. Nester

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 19 18:35 EDT 2022. Contains 353847 sequences. (Running on oeis4.)