OFFSET
1,4
COMMENTS
Turning over the necklace is not allowed.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..1000
FORMULA
From Robert A. Russell, Sep 26 2018: (Start)
a(n) = (k!/n) Sum_{d|n} phi(d) S2(n/d,k), where k=4 is the number of colors and S2 is the Stirling subset number A008277.
G.f.: -Sum_{d>0} (phi(d)/d) * Sum_{j} (-1)^(k-j) * C(k,j) * log(1-j x^d), where k=4 is the number of colors. (End)
EXAMPLE
For n=4, the six necklaces are ABCD, ABDC, ACBD, ACDB, ADBC and ADCB.
MATHEMATICA
k=4; Table[k!DivisorSum[n, EulerPhi[#]StirlingS2[n/#, k]&]/n, {n, 1, 30}] (* Robert A. Russell, Sep 26 2018 *)
PROG
(PARI) a(n) = my(k=4); (k!/n)*sumdiv(n, d, eulerphi(d)*stirling(n/d, k, 2)); \\ Michel Marcus, Sep 27 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved