login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A056289 Number of primitive (period n) n-bead necklaces with exactly four different colored beads. 5
0, 0, 0, 6, 48, 260, 1200, 5100, 20720, 81828, 318000, 1222870, 4675440, 17813820, 67769504, 257695800, 980240880, 3731732200, 14222737200, 54278498154, 207438936800, 793940157900, 3043140078000, 11681056021300, 44900438149248, 172824327151140, 666070256468960 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Turning over the necklace is not allowed.

REFERENCES

M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]

LINKS

Alois P. Heinz, Table of n, a(n) for n = 1..1000

FORMULA

a(n) = Sum_{d|n} mu(d)*A056284(n/d).

MAPLE

with(numtheory):

b:= proc(n, k) option remember; `if`(n=0, 1,

      add(mobius(n/d)*k^d, d=divisors(n))/n)

    end:

a:= n-> add(b(n, 4-j)*binomial(4, j)*(-1)^j, j=0..4):

seq(a(n), n=1..30);  # Alois P. Heinz, Jan 25 2015

MATHEMATICA

b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^#&]/n]; a[n_] := Sum[b[n, 4-j]*Binomial[4, j]*(-1)^j, {j, 0, 4}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 20 2017, after Alois P. Heinz *)

CROSSREFS

Cf. A027377.

Column k=4 of A254040.

Sequence in context: A260344 A262354 A052771 * A056284 A293967 A246587

Adjacent sequences:  A056286 A056287 A056288 * A056290 A056291 A056292

KEYWORD

nonn

AUTHOR

Marks R. Nester

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 9 13:57 EDT 2020. Contains 336323 sequences. (Running on oeis4.)