|
|
A056289
|
|
Number of primitive (period n) n-bead necklaces with exactly four different colored beads.
|
|
5
|
|
|
0, 0, 0, 6, 48, 260, 1200, 5100, 20720, 81828, 318000, 1222870, 4675440, 17813820, 67769504, 257695800, 980240880, 3731732200, 14222737200, 54278498154, 207438936800, 793940157900, 3043140078000, 11681056021300, 44900438149248, 172824327151140, 666070256468960
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,4
|
|
COMMENTS
|
Turning over the necklace is not allowed.
|
|
REFERENCES
|
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 1..1000
|
|
FORMULA
|
a(n) = Sum_{d|n} mu(d)*A056284(n/d).
|
|
MAPLE
|
with(numtheory):
b:= proc(n, k) option remember; `if`(n=0, 1,
add(mobius(n/d)*k^d, d=divisors(n))/n)
end:
a:= n-> add(b(n, 4-j)*binomial(4, j)*(-1)^j, j=0..4):
seq(a(n), n=1..30); # Alois P. Heinz, Jan 25 2015
|
|
MATHEMATICA
|
b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^#&]/n]; a[n_] := Sum[b[n, 4-j]*Binomial[4, j]*(-1)^j, {j, 0, 4}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Feb 20 2017, after Alois P. Heinz *)
|
|
CROSSREFS
|
Cf. A027377.
Column k=4 of A254040.
Sequence in context: A353247 A262354 A052771 * A056284 A293967 A246587
Adjacent sequences: A056286 A056287 A056288 * A056290 A056291 A056292
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Marks R. Nester
|
|
STATUS
|
approved
|
|
|
|