login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056290
Number of primitive (period n) n-bead necklaces with exactly five different colored beads.
4
0, 0, 0, 0, 24, 300, 2400, 15750, 92680, 510288, 2691600, 13793850, 69309240, 343499100, 1686135352, 8221421250, 39901776360, 193053923860, 932142850800, 4495236287850, 21664357532920, 104388118174500, 503044634004000, 2425003910574000, 11696087875731600
OFFSET
1,5
COMMENTS
Turning over the necklace is not allowed.
REFERENCES
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2]
LINKS
FORMULA
sum mu(d)*A056285(n/d) where d|n.
MAPLE
with(numtheory):
b:= proc(n, k) option remember; `if`(n=0, 1,
add(mobius(n/d)*k^d, d=divisors(n))/n)
end:
a:= n-> add(b(n, 5-j)*binomial(5, j)*(-1)^j, j=0..5):
seq(a(n), n=1..30); # Alois P. Heinz, Jan 25 2015
MATHEMATICA
b[n_, k_] := b[n, k] = If[n==0, 1, DivisorSum[n, MoebiusMu[n/#]*k^# &]/n];
a[n_] := Sum[b[n, 5 - j]*Binomial[5, j]*(-1)^j, {j, 0, 5}];
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 06 2018, after Alois P. Heinz *)
CROSSREFS
Cf. A001692.
Column k=5 of A254040.
Sequence in context: A162366 A153782 A073990 * A056285 A162686 A010976
KEYWORD
nonn
STATUS
approved