login
A162686
G.f. is the polynomial (Product_{k=1..24} (1 - x^(3*k)))/(1-x)^24.
1
1, 24, 300, 2599, 17526, 97980, 472419, 2018226, 7790145, 27571180, 90507690, 278110755, 805927980, 2216192760, 5813100315, 14608785961, 35307910374, 82339194540, 185806904840, 406753277760, 865727550900, 1795032947941
OFFSET
0,2
COMMENTS
This is a row of the triangle in A162499. Only finitely many terms are nonzero.
LINKS
MAPLE
m:=24: seq(coeff(series(mul((1-x^(3*k)), k=1..m)/(1-x)^m, x, n+1), x, n), n=0..21); # Muniru A Asiru, Jul 07 2018
MATHEMATICA
CoefficientList[Series[Times@@(1-x^(3*Range[24]))/(1-x)^24, {x, 0, 50}], x] (* G. C. Greubel, Jul 06 2018 *)
PROG
(PARI) x='x+O('x^50); A = prod(k=1, 24, (1-x^(3*k)))/(1-x)^24; Vec(A) \\ G. C. Greubel, Jul 06 2018
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); F:=(&*[(1-x^(3*k)): k in [1..24]])/(1-x)^24; Coefficients(R!(F)); // G. C. Greubel, Jul 06 2018
CROSSREFS
Sequence in context: A073990 A056290 A056285 * A010976 A100130 A014103
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved