login
A162499
Triangle read by rows in which row n gives coefficients of the expansion of the polynomial Product( (1-x^(3*k))/(1-x), k=1..n).
31
1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 3, 6, 9, 12, 15, 17, 18, 18, 17, 15, 12, 9, 6, 3, 1, 1, 4, 10, 19, 31, 46, 63, 81, 99, 116, 131, 143, 151, 154, 151, 143, 131, 116, 99, 81, 63, 46, 31, 19, 10, 4, 1, 1, 5, 15, 34, 65, 111, 174, 255, 354, 470, 601, 744, 895
OFFSET
0,6
REFERENCES
A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.
LINKS
A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012.
A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv:1302.6287 [physics.optics], 2013.
EXAMPLE
Triangle begins:
1
1, 1, 1
1, 2, 3, 3, 3, 3, 2, 1,
1, 3, 6, 9, 12, 15, 17, 18, 18, 17, 15, 12, 9, 6, 3, 1,
1, 4, 10, 19, 31, 46, 63, 81, 99, 116, 131, 143, 151, 154, 151, 143, 131, 116, 99, 81, 63, 46, 31, 19, 10, 4, 1
1, 5, 15, 34, 65, 111, 174, 255, 354, 470, 601, 744, 895, 1049, 1200, 1342, 1469, 1575, 1655, 1705, 1722, 1705, 1655, 1575, 1469, 1342, 1200, 1049, 895, 744, 601, 470, 354, 255, 174, 111, 65, 34, 15, 5, 1,
...
MATHEMATICA
row[n_] := CoefficientList[Product[(1 - x^(3*k))/(1 - x), {k, 1, n}], x]; Table[row[n], {n, 0, 5}] // Flatten (* Jean-François Alcover, Sep 19 2016 *)
CROSSREFS
Rows give A162500, ...
Sequence in context: A127661 A358617 A008968 * A350857 A135715 A089326
KEYWORD
nonn,tabf,look
AUTHOR
N. J. A. Sloane, Dec 02 2009
STATUS
approved