

A162499


Triangle read by rows in which row n gives coefficients of the expansion of the polynomial Product( (1x^(3*k))/(1x), k=1..n).


31



1, 1, 1, 1, 1, 2, 3, 3, 3, 3, 2, 1, 1, 3, 6, 9, 12, 15, 17, 18, 18, 17, 15, 12, 9, 6, 3, 1, 1, 4, 10, 19, 31, 46, 63, 81, 99, 116, 131, 143, 151, 154, 151, 143, 131, 116, 99, 81, 63, 46, 31, 19, 10, 4, 1, 1, 5, 15, 34, 65, 111, 174, 255, 354, 470, 601, 744, 895
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,6


REFERENCES

A. V. Yurkin, New binomial and new view on light theory, (book), 2013, 78 pages, no publisher listed.


LINKS

G. C. Greubel, Rows n=0..20 of triangle, flattened
A. V. Yurkin, On similarity of systems of geometrical and arithmetic triangles, in Mathematics, Computing, Education Conference XIX, 2012.
A. V. Yurkin, New view on the diffraction discovered by Grimaldi and Gaussian beams, arXiv:1302.6287 [physics.optics], 2013.


EXAMPLE

Triangle begins:
1
1, 1, 1
1, 2, 3, 3, 3, 3, 2, 1,
1, 3, 6, 9, 12, 15, 17, 18, 18, 17, 15, 12, 9, 6, 3, 1,
1, 4, 10, 19, 31, 46, 63, 81, 99, 116, 131, 143, 151, 154, 151, 143, 131, 116, 99, 81, 63, 46, 31, 19, 10, 4, 1
1, 5, 15, 34, 65, 111, 174, 255, 354, 470, 601, 744, 895, 1049, 1200, 1342, 1469, 1575, 1655, 1705, 1722, 1705, 1655, 1575, 1469, 1342, 1200, 1049, 895, 744, 601, 470, 354, 255, 174, 111, 65, 34, 15, 5, 1,
...


MATHEMATICA

row[n_] := CoefficientList[Product[(1  x^(3*k))/(1  x), {k, 1, n}], x]; Table[row[n], {n, 0, 5}] // Flatten (* JeanFrançois Alcover, Sep 19 2016 *)


CROSSREFS

Rows give A162500, ...
Sequence in context: A097032 A127661 A008968 * A135715 A089326 A237367
Adjacent sequences: A162496 A162497 A162498 * A162500 A162501 A162502


KEYWORD

nonn,tabf,look


AUTHOR

N. J. A. Sloane, Dec 02 2009


STATUS

approved



