The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A127661 Lengths of the infinitary aliquot sequences. 10
 2, 3, 3, 3, 3, 1, 3, 4, 3, 5, 3, 5, 3, 6, 4, 3, 3, 6, 3, 6, 4, 7, 3, 8, 3, 4, 4, 6, 3, 6, 3, 4, 5, 7, 4, 7, 3, 8, 4, 8, 3, 5, 3, 4, 5, 5, 3, 7, 3, 7, 5, 7, 3, 4, 4, 6, 4, 5, 3, 1, 3, 8, 4, 5, 4, 3, 3, 8, 5, 10, 3, 3, 3, 9, 4, 9, 4, 2, 3, 8, 3, 5, 3, 10, 4, 6, 6, 8, 3, 1, 5, 7, 5, 8, 4, 9, 3, 8, 5, 7 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS An infinitary aliquot sequence is defined by the map x->A049417(x)-x. The map usually terminates with a zero, but may enter cycles (if n in A127662 for example). The length of an infinitary aliquot sequence is defined to be the length of its transient part + the length of its terminal cycle. The value of a(840) starting the infinitary aliquot sequence 840 -> 2040 -> 4440 -> 9240 -> 25320,... is >1500. - R. J. Mathar, Oct 05 2017 LINKS R. J. Mathar, Table of n, a(n) for n = 1..839 Graeme L. Cohen, On an integer's infinitary divisors, Math. Comp., 54 (1990), 395-411. Hans Havermann, Graphs of infinitary aliquot sequences for 840, 1152, 2442, 2658, 2982, 5766, 6216, 6870, 7560, 8670, 9030, 9570 (click to see full plots) D. Moews, A database of aliquot cycles (2015) J. O. M. Pedersen, Tables of Aliquot Cycles [Broken link] J. O. M. Pedersen, Tables of Aliquot Cycles [Via Internet Archive Wayback-Machine] J. O. M. Pedersen, Tables of Aliquot Cycles [Cached copy, pdf file only] EXAMPLE a(4)=3 because the infinitary aliquot sequence generated by 4 is 4 -> 1 -> 0 and it has length 3. a(6) = 1 because 6 -> 6 -> 6 ->... enters a cycle after 1 term. a(8) = 4 because 8 -> 7 -> 1 -> 0 terminates after 4 terms. a(30) = 6 because 30 ->42 -> 54 -> 66 -> 78 -> 90 -> 90 -> 90 -> ...enters a cycle after 6 terms. a(126)=2 because 126 -> 114 -> 126 enters a cycle after 2 terms. MAPLE # Uses code snippets of A049417 A127661 := proc(n)     local trac, x;     x := n ;     trac := [x] ;     while true do         x := A049417(x)-trac[-1] ;         if x = 0 then             return 1+nops(trac) ;         elif x in trac then             return nops(trac) ;         end if;         trac := [op(trac), x] ;     end do: end proc: seq(A127661(n), n=1..100) ; # R. J. Mathar, Oct 05 2017 MATHEMATICA ExponentList[n_Integer, factors_List]:={#, IntegerExponent[n, # ]}&/@factors; InfinitaryDivisors[1]:={1}; InfinitaryDivisors[n_Integer?Positive]:=Module[ { factors=First/@FactorInteger[n], d=Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g]==g][ #, Last[ # ]]]&/@ Transpose[Last/@ExponentList[ #, factors]&/@d]], _?(And@@#&), {1}]] ]] ]; properinfinitarydivisorsum[k_]:=Plus@@InfinitaryDivisors[k]-k; g[n_] := If[n > 0, properinfinitarydivisorsum[n], 0]; iTrajectory[n_] := Most[NestWhileList[g, n, UnsameQ, All]]; Length[iTrajectory[ # ]] &/@ Range[100] CROSSREFS Cf. A126168, A127662 - A127667, A293355, A098007. Sequence in context: A110049 A246577 A097032 * A008968 A162499 A135715 Adjacent sequences:  A127658 A127659 A127660 * A127662 A127663 A127664 KEYWORD nonn AUTHOR Ant King, Jan 26 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 16 08:07 EDT 2021. Contains 343940 sequences. (Running on oeis4.)